1011 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1011 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the License); you may
 | |
|  * not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  * www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | |
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| /* ----------------------------------------------------------------------
 | |
|  * Project:      CMSIS NN Library
 | |
|  * Title:        arm_nnfunctions.h
 | |
|  * Description:  Public header file for CMSIS NN Library
 | |
|  *
 | |
|  * $Date:        13. July 2018
 | |
|  * $Revision:    V.1.0.0
 | |
|  *
 | |
|  * Target Processor:  Cortex-M cores
 | |
|  * -------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|    \mainpage CMSIS NN Software Library
 | |
|    *
 | |
|    * Introduction
 | |
|    * ------------
 | |
|    *
 | |
|    * This user manual describes the CMSIS NN software library,
 | |
|    * a collection of efficient neural network kernels developed to maximize the 
 | |
|    * performance and minimize the memory footprint of neural networks on Cortex-M processor cores.
 | |
|    *
 | |
|    * The library is divided into a number of functions each covering a specific category:
 | |
|    * - Neural Network Convolution Functions
 | |
|    * - Neural Network Activation Functions
 | |
|    * - Fully-connected Layer Functions
 | |
|    * - Neural Network Pooling Functions
 | |
|    * - Softmax Functions
 | |
|    * - Neural Network Support Functions
 | |
|    *
 | |
|    * The library has separate functions for operating on different weight and activation data
 | |
|    * types including 8-bit integers (q7_t) and 16-bit integers (q15_t). The descrition of the
 | |
|    * kernels are included in the function description. The implementation details are also 
 | |
|    * described in this paper [1]. 
 | |
|    *
 | |
|    * Block Diagram
 | |
|    * --------
 | |
|    * \image html CMSIS-NN-OVERVIEW.PNG
 | |
|    *
 | |
|    * Examples
 | |
|    * --------
 | |
|    *
 | |
|    * The library ships with a number of examples which demonstrate how to use the library functions.
 | |
|    *
 | |
|    * Pre-processor Macros
 | |
|    * ------------
 | |
|    *
 | |
|    * Each library project have differant pre-processor macros.
 | |
|    *
 | |
|    * - ARM_MATH_DSP:
 | |
|    *
 | |
|    * Define macro ARM_MATH_DSP, If the silicon supports DSP instructions.
 | |
|    *
 | |
|    * - ARM_MATH_BIG_ENDIAN:
 | |
|    *
 | |
|    * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
 | |
|    *
 | |
|    * - ARM_NN_TRUNCATE:
 | |
|    *
 | |
|    * Define macro ARM_NN_TRUNCATE to use floor instead of round-to-the-nearest-int for the computation.
 | |
|    *
 | |
|    * Copyright Notice
 | |
|    * ------------
 | |
|    *
 | |
|    * Copyright (C) 2010-2018 Arm Limited. All rights reserved.
 | |
|    *
 | |
|    * [1] CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs https://arxiv.org/abs/1801.06601
 | |
|    */
 | |
| 
 | |
| /**
 | |
|  * @defgroup groupNN Neural Network Functions
 | |
|  * These functions perform basic operations for neural network layers. 
 | |
|  */
 | |
| 
 | |
| #ifndef _ARM_NNFUNCTIONS_H
 | |
| #define _ARM_NNFUNCTIONS_H
 | |
| 
 | |
| #include "arm_nnsupportfunctions.h"
 | |
| #include "arm_nn_tables.h"
 | |
| 
 | |
| #define USE_INTRINSIC
 | |
| 
 | |
| //#define ARM_NN_TRUNCATE /* This config the rounding model to floor or round to the nearest int */
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| extern    "C"
 | |
| {
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * @defgroup NNConv Neural Network Convolution Functions
 | |
|  *
 | |
|  * Perform convolution layer
 | |
|  *
 | |
|  * The convolution is implemented in 2 steps: im2col and GEMM
 | |
|  *
 | |
|  * im2col is a process of converting each patch of image data into 
 | |
|  * a column. After im2col, the convolution is computed as matrix-matrix
 | |
|  * multiplication.
 | |
|  * 
 | |
|  * To reduce the memory footprint, the im2col is performed partially.
 | |
|  * Each iteration, only a few column (i.e., patches) are generated and 
 | |
|  * computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions.
 | |
|  *
 | |
|  */
 | |
| 
 | |
|   /**
 | |
|    * @brief Basic Q7 convolution function
 | |
|    * @param[in]       Im_in       pointer to input tensor
 | |
|    * @param[in]       dim_im_in   input tensor dimention
 | |
|    * @param[in]       ch_im_in    number of input tensor channels
 | |
|    * @param[in]       wt          pointer to kernel weights
 | |
|    * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
 | |
|    * @param[in]       dim_kernel  filter kernel size
 | |
|    * @param[in]       padding     padding sizes
 | |
|    * @param[in]       stride      convolution stride
 | |
|    * @param[in]       bias        pointer to bias
 | |
|    * @param[in]       bias_shift  amount of left-shift for bias
 | |
|    * @param[in]       out_shift   amount of right-shift for output
 | |
|    * @param[in,out]   Im_out      pointer to output tensor
 | |
|    * @param[in]       dim_im_out  output tensor dimension
 | |
|    * @param[in,out]   bufferA     pointer to buffer space for input 
 | |
|    * @param[in,out]   bufferB     pointer to buffer space for output
 | |
|    * @return     The function returns <code>ARM_MATH_SUCCESS</code> 
 | |
|    *
 | |
|    */
 | |
| 
 | |
|     arm_status arm_convolve_HWC_q7_basic(const q7_t * Im_in,
 | |
|                                          const uint16_t dim_im_in,
 | |
|                                          const uint16_t ch_im_in,
 | |
|                                          const q7_t * wt,
 | |
|                                          const uint16_t ch_im_out,
 | |
|                                          const uint16_t dim_kernel,
 | |
|                                          const uint16_t padding,
 | |
|                                          const uint16_t stride,
 | |
|                                          const q7_t * bias,
 | |
|                                          const uint16_t bias_shift,
 | |
|                                          const uint16_t out_shift,
 | |
|                                          q7_t * Im_out, 
 | |
|                                          const uint16_t dim_im_out, 
 | |
|                                          q15_t * bufferA, 
 | |
|                                          q7_t * bufferB);
 | |
| 
 | |
|   /**
 | |
|    * @brief Basic Q7 convolution function (non-sqaure shape)
 | |
|    * @param[in]       Im_in        pointer to input tensor
 | |
|    * @param[in]       dim_im_in_x  input tensor dimention x
 | |
|    * @param[in]       dim_im_in_y  input tensor dimention y
 | |
|    * @param[in]       ch_im_in     number of input tensor channels
 | |
|    * @param[in]       wt           pointer to kernel weights
 | |
|    * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
 | |
|    * @param[in]       dim_kernel_x filter kernel size x
 | |
|    * @param[in]       dim_kernel_y filter kernel size y
 | |
|    * @param[in]       padding_x    padding size x
 | |
|    * @param[in]       padding_y    padding size y
 | |
|    * @param[in]       stride_x     convolution stride x
 | |
|    * @param[in]       stride_y     convolution stride y
 | |
|    * @param[in]       bias         pointer to bias
 | |
|    * @param[in]       bias_shift   amount of left-shift for bias
 | |
|    * @param[in]       out_shift    amount of right-shift for output
 | |
|    * @param[in,out]   Im_out       pointer to output tensor
 | |
|    * @param[in]       dim_im_out_x output tensor dimension x
 | |
|    * @param[in]       dim_im_out_y output tensor dimension y
 | |
|    * @param[in,out]   bufferA      pointer to buffer space for input
 | |
|    * @param[in,out]   bufferB      pointer to buffer space for output
 | |
|    * @return     The function returns <code>ARM_MATH_SUCCESS</code> 
 | |
|    */
 | |
| 
 | |
|     arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in,
 | |
|                                                   const uint16_t dim_im_in_x,
 | |
|                                                   const uint16_t dim_im_in_y,
 | |
|                                                   const uint16_t ch_im_in,
 | |
|                                                   const q7_t * wt,
 | |
|                                                   const uint16_t ch_im_out,
 | |
|                                                   const uint16_t dim_kernel_x,
 | |
|                                                   const uint16_t dim_kernel_y,
 | |
|                                                   const uint16_t padding_x,
 | |
|                                                   const uint16_t padding_y,
 | |
|                                                   const uint16_t stride_x,
 | |
|                                                   const uint16_t stride_y,
 | |
|                                                   const q7_t * bias,
 | |
|                                                   const uint16_t bias_shift,
 | |
|                                                   const uint16_t out_shift,
 | |
|                                                   q7_t * Im_out,
 | |
|                                                   const uint16_t dim_im_out_x,
 | |
|                                                   const uint16_t dim_im_out_y,
 | |
|                                                   q15_t * bufferA,
 | |
|                                                   q7_t * bufferB);
 | |
| 
 | |
|   /**
 | |
|    * @brief Basic Q15 convolution function
 | |
|    * @param[in]       Im_in       pointer to input tensor
 | |
|    * @param[in]       dim_im_in   input tensor dimention
 | |
|    * @param[in]       ch_im_in    number of input tensor channels
 | |
|    * @param[in]       wt          pointer to kernel weights
 | |
|    * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
 | |
|    * @param[in]       dim_kernel  filter kernel size
 | |
|    * @param[in]       padding     padding sizes
 | |
|    * @param[in]       stride      convolution stride
 | |
|    * @param[in]       bias        pointer to bias
 | |
|    * @param[in]       bias_shift  amount of left-shift for bias
 | |
|    * @param[in]       out_shift   amount of right-shift for output
 | |
|    * @param[in,out]   Im_out      pointer to output tensor
 | |
|    * @param[in]       dim_im_out  output tensor dimension
 | |
|    * @param[in,out]   bufferA     pointer to buffer space for input 
 | |
|    * @param[in,out]   bufferB     pointer to buffer space for output
 | |
|    * @return     The function returns <code>ARM_MATH_SUCCESS</code> 
 | |
|    *
 | |
|    */
 | |
| 
 | |
|     arm_status arm_convolve_HWC_q15_basic(const q15_t * Im_in,
 | |
|                                           const uint16_t dim_im_in,
 | |
|                                           const uint16_t ch_im_in,
 | |
|                                           const q15_t * wt,
 | |
|                                           const uint16_t ch_im_out,
 | |
|                                           const uint16_t dim_kernel,
 | |
|                                           const uint16_t padding,
 | |
|                                           const uint16_t stride,
 | |
|                                           const q15_t * bias,
 | |
|                                           const uint16_t bias_shift,
 | |
|                                           const uint16_t out_shift,
 | |
|                                           q15_t * Im_out, 
 | |
|                                           const uint16_t dim_im_out, 
 | |
|                                           q15_t * bufferA, 
 | |
|                                           q7_t * bufferB);
 | |
| 
 | |
|   /**
 | |
|    * @brief Fast Q7 convolution function
 | |
|    * @param[in]       Im_in       pointer to input tensor
 | |
|    * @param[in]       dim_im_in   input tensor dimention
 | |
|    * @param[in]       ch_im_in    number of input tensor channels
 | |
|    * @param[in]       wt          pointer to kernel weights
 | |
|    * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
 | |
|    * @param[in]       dim_kernel  filter kernel size
 | |
|    * @param[in]       padding     padding sizes
 | |
|    * @param[in]       stride      convolution stride
 | |
|    * @param[in]       bias        pointer to bias
 | |
|    * @param[in]       bias_shift  amount of left-shift for bias
 | |
|    * @param[in]       out_shift   amount of right-shift for output
 | |
|    * @param[in,out]   Im_out      pointer to output tensor
 | |
|    * @param[in]       dim_im_out  output tensor dimension
 | |
|    * @param[in,out]   bufferA     pointer to buffer space for input 
 | |
|    * @param[in,out]   bufferB     pointer to buffer space for output
 | |
|    * @return     The function returns either
 | |
|    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 | |
|    *
 | |
|    * This function is the version with full list of optimization tricks, but with
 | |
|    * some contraints:
 | |
|    *   ch_im_in is multiple of 4
 | |
|    *   ch_im_out is multiple of 2
 | |
|    */
 | |
| 
 | |
|     arm_status arm_convolve_HWC_q7_fast(const q7_t * Im_in,
 | |
|                                         const uint16_t dim_im_in,
 | |
|                                         const uint16_t ch_im_in,
 | |
|                                         const q7_t * wt,
 | |
|                                         const uint16_t ch_im_out,
 | |
|                                         const uint16_t dim_kernel,
 | |
|                                         const uint16_t padding,
 | |
|                                         const uint16_t stride,
 | |
|                                         const q7_t * bias,
 | |
|                                         const uint16_t bias_shift,
 | |
|                                         const uint16_t out_shift,
 | |
|                                         q7_t * Im_out, 
 | |
|                                         const uint16_t dim_im_out, 
 | |
|                                         q15_t * bufferA, 
 | |
|                                         q7_t * bufferB);
 | |
| 
 | |
|   /**
 | |
|    * @brief Fast Q7 convolution function (non-sqaure shape)
 | |
|    * @param[in]       Im_in        pointer to input tensor
 | |
|    * @param[in]       dim_im_in_x  input tensor dimention x
 | |
|    * @param[in]       dim_im_in_y  input tensor dimention y
 | |
|    * @param[in]       ch_im_in     number of input tensor channels
 | |
|    * @param[in]       wt           pointer to kernel weights
 | |
|    * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
 | |
|    * @param[in]       dim_kernel_x filter kernel size x
 | |
|    * @param[in]       dim_kernel_y filter kernel size y
 | |
|    * @param[in]       padding_x    padding size x
 | |
|    * @param[in]       padding_y    padding size y
 | |
|    * @param[in]       stride_x     convolution stride x
 | |
|    * @param[in]       stride_y     convolution stride y
 | |
|    * @param[in]       bias         pointer to bias
 | |
|    * @param[in]       bias_shift   amount of left-shift for bias
 | |
|    * @param[in]       out_shift    amount of right-shift for output
 | |
|    * @param[in,out]   Im_out       pointer to output tensor
 | |
|    * @param[in]       dim_im_out_x output tensor dimension x
 | |
|    * @param[in]       dim_im_out_y output tensor dimension y
 | |
|    * @param[in,out]   bufferA      pointer to buffer space for input 
 | |
|    * @param[in,out]   bufferB      pointer to buffer space for output
 | |
|    * @return     The function returns either
 | |
|    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 | |
|    *
 | |
|    * This function is the version with full list of optimization tricks, but with
 | |
|    * some contraints:
 | |
|    *   ch_im_in is multiple of 4
 | |
|    *   ch_im_out is multiple of 2
 | |
|    */
 | |
| 
 | |
|     arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in,
 | |
|                                                   const uint16_t dim_im_in_x,
 | |
|                                                   const uint16_t dim_im_in_y,
 | |
|                                                   const uint16_t ch_im_in,
 | |
|                                                   const q7_t * wt,
 | |
|                                                   const uint16_t ch_im_out,
 | |
|                                                   const uint16_t dim_kernel_x,
 | |
|                                                   const uint16_t dim_kernel_y,
 | |
|                                                   const uint16_t padding_x,
 | |
|                                                   const uint16_t padding_y,
 | |
|                                                   const uint16_t stride_x,
 | |
|                                                   const uint16_t stride_y,
 | |
|                                                   const q7_t * bias,
 | |
|                                                   const uint16_t bias_shift,
 | |
|                                                   const uint16_t out_shift,
 | |
|                                                   q7_t * Im_out,
 | |
|                                                   const uint16_t dim_im_out_x,
 | |
|                                                   const uint16_t dim_im_out_y,
 | |
|                                                   q15_t * bufferA,
 | |
|                                                   q7_t * bufferB);
 | |
| 
 | |
|   /**
 | |
|    * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape)
 | |
|    * @param[in]       Im_in        pointer to input tensor
 | |
|    * @param[in]       dim_im_in_x  input tensor dimention x
 | |
|    * @param[in]       dim_im_in_y  input tensor dimention y
 | |
|    * @param[in]       ch_im_in     number of input tensor channels
 | |
|    * @param[in]       wt           pointer to kernel weights
 | |
|    * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
 | |
|    * @param[in]       dim_kernel_x filter kernel size x
 | |
|    * @param[in]       dim_kernel_y filter kernel size y
 | |
|    * @param[in]       padding_x    padding size x
 | |
|    * @param[in]       padding_y    padding size y
 | |
|    * @param[in]       stride_x     convolution stride x
 | |
|    * @param[in]       stride_y     convolution stride y
 | |
|    * @param[in]       bias         pointer to bias
 | |
|    * @param[in]       bias_shift   amount of left-shift for bias
 | |
|    * @param[in]       out_shift    amount of right-shift for output
 | |
|    * @param[in,out]   Im_out       pointer to output tensor
 | |
|    * @param[in]       dim_im_out_x output tensor dimension x
 | |
|    * @param[in]       dim_im_out_y output tensor dimension y
 | |
|    * @param[in,out]   bufferA      pointer to buffer space for input 
 | |
|    * @param[in,out]   bufferB      pointer to buffer space for output
 | |
|    * @return     The function returns either
 | |
|    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 | |
|    *
 | |
|    * This function implement convolution with 1x1 kernel size (i.e., dim_kernel_x=1
 | |
|    * and dim_kernel_y=1). It can be used for
 | |
|    * second half of MobileNets after depthwise separable convolution.
 | |
|    *
 | |
|    * This function is the version with full list of optimization tricks, but with
 | |
|    * some contraints:
 | |
|    *   ch_im_in is multiple of 4
 | |
|    *   ch_im_out is multiple of 2
 | |
|    */
 | |
|     arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in,
 | |
|                                                       const uint16_t dim_im_in_x,
 | |
|                                                       const uint16_t dim_im_in_y,
 | |
|                                                       const uint16_t ch_im_in,
 | |
|                                                       const q7_t * wt,
 | |
|                                                       const uint16_t ch_im_out,
 | |
|                                                       const uint16_t dim_kernel_x,
 | |
|                                                       const uint16_t dim_kernel_y,
 | |
|                                                       const uint16_t padding_x,
 | |
|                                                       const uint16_t padding_y,
 | |
|                                                       const uint16_t stride_x,
 | |
|                                                       const uint16_t stride_y,
 | |
|                                                       const q7_t * bias,
 | |
|                                                       const uint16_t bias_shift,
 | |
|                                                       const uint16_t out_shift,
 | |
|                                                       q7_t * Im_out,
 | |
|                                                       const uint16_t dim_im_out_x,
 | |
|                                                       const uint16_t dim_im_out_y,
 | |
|                                                       q15_t * bufferA,
 | |
|                                                       q7_t * bufferB);
 | |
| 
 | |
|   /**
 | |
|    * @brief Q7 version of convolution for RGB image
 | |
|    * @param[in]       Im_in       pointer to input tensor
 | |
|    * @param[in]       dim_im_in   input tensor dimention
 | |
|    * @param[in]       ch_im_in    number of input tensor channels
 | |
|    * @param[in]       wt          pointer to kernel weights
 | |
|    * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
 | |
|    * @param[in]       dim_kernel  filter kernel size
 | |
|    * @param[in]       padding     padding sizes
 | |
|    * @param[in]       stride      convolution stride
 | |
|    * @param[in]       bias        pointer to bias
 | |
|    * @param[in]       bias_shift  amount of left-shift for bias
 | |
|    * @param[in]       out_shift   amount of right-shift for output
 | |
|    * @param[in,out]   Im_out      pointer to output tensor
 | |
|    * @param[in]       dim_im_out  output tensor dimension
 | |
|    * @param[in,out]   bufferA     pointer to buffer space for input 
 | |
|    * @param[in,out]   bufferB     pointer to buffer space for output
 | |
|    * @return     The function returns either
 | |
|    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 | |
|    *
 | |
|    * This kernel is written exclusively for convolution with ch_im_in
 | |
|    * equals 3. This applies on the first layer of CNNs which has input
 | |
|    * image with RGB format.
 | |
|    */
 | |
| 
 | |
|     arm_status arm_convolve_HWC_q7_RGB(const q7_t * Im_in,
 | |
|                                        const uint16_t dim_im_in,
 | |
|                                        const uint16_t ch_im_in,
 | |
|                                        const q7_t * wt,
 | |
|                                        const uint16_t ch_im_out,
 | |
|                                        const uint16_t dim_kernel,
 | |
|                                        const uint16_t padding,
 | |
|                                        const uint16_t stride,
 | |
|                                        const q7_t * bias,
 | |
|                                        const uint16_t bias_shift,
 | |
|                                        const uint16_t out_shift,
 | |
|                                        q7_t * Im_out, 
 | |
|                                        const uint16_t dim_im_out, 
 | |
|                                        q15_t * bufferA, 
 | |
|                                        q7_t * bufferB);
 | |
| 
 | |
|   /**
 | |
|    * @brief Fast Q15 convolution function
 | |
|    * @param[in]       Im_in       pointer to input tensor
 | |
|    * @param[in]       dim_im_in   input tensor dimention
 | |
|    * @param[in]       ch_im_in    number of input tensor channels
 | |
|    * @param[in]       wt          pointer to kernel weights
 | |
|    * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
 | |
|    * @param[in]       dim_kernel  filter kernel size
 | |
|    * @param[in]       padding     padding sizes
 | |
|    * @param[in]       stride      convolution stride
 | |
|    * @param[in]       bias        pointer to bias
 | |
|    * @param[in]       bias_shift  amount of left-shift for bias
 | |
|    * @param[in]       out_shift   amount of right-shift for output
 | |
|    * @param[in,out]   Im_out      pointer to output tensor
 | |
|    * @param[in]       dim_im_out  output tensor dimension
 | |
|    * @param[in,out]   bufferA     pointer to buffer space for input 
 | |
|    * @param[in,out]   bufferB     pointer to buffer space for output
 | |
|    * @return     The function returns either
 | |
|    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 | |
|    *
 | |
|    * This function is the version with full list of optimization tricks, but with
 | |
|    * some contraints:
 | |
|    *   ch_im_in is multiple of 2
 | |
|    *   ch_im_out is multiple of 2
 | |
|    */
 | |
| 
 | |
|     arm_status arm_convolve_HWC_q15_fast(const q15_t * Im_in,
 | |
|                                          const uint16_t dim_im_in,
 | |
|                                          const uint16_t ch_im_in,
 | |
|                                          const q15_t * wt,
 | |
|                                          const uint16_t ch_im_out,
 | |
|                                          const uint16_t dim_kernel,
 | |
|                                          const uint16_t padding,
 | |
|                                          const uint16_t stride,
 | |
|                                          const q15_t * bias,
 | |
|                                          const uint16_t bias_shift,
 | |
|                                          const uint16_t out_shift,
 | |
|                                          q15_t * Im_out, 
 | |
|                                          const uint16_t dim_im_out, 
 | |
|                                          q15_t * bufferA, 
 | |
|                                          q7_t * bufferB);
 | |
| 
 | |
|   /**
 | |
|    * @brief Fast Q15 convolution function (non-sqaure shape)
 | |
|    * @param[in]       Im_in        pointer to input tensor
 | |
|    * @param[in]       dim_im_in_x  input tensor dimention x
 | |
|    * @param[in]       dim_im_in_y  input tensor dimention y
 | |
|    * @param[in]       ch_im_in     number of input tensor channels
 | |
|    * @param[in]       wt           pointer to kernel weights
 | |
|    * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
 | |
|    * @param[in]       dim_kernel_x filter kernel size x
 | |
|    * @param[in]       dim_kernel_y filter kernel size y
 | |
|    * @param[in]       padding_x    padding size x
 | |
|    * @param[in]       padding_y    padding size y
 | |
|    * @param[in]       stride_x     convolution stride x
 | |
|    * @param[in]       stride_y     convolution stride y
 | |
|    * @param[in]       bias         pointer to bias
 | |
|    * @param[in]       bias_shift   amount of left-shift for bias
 | |
|    * @param[in]       out_shift    amount of right-shift for output
 | |
|    * @param[in,out]   Im_out       pointer to output tensor
 | |
|    * @param[in]       dim_im_out_x output tensor dimension x
 | |
|    * @param[in]       dim_im_out_y output tensor dimension y
 | |
|    * @param[in,out]   bufferA      pointer to buffer space for input 
 | |
|    * @param[in,out]   bufferB      pointer to buffer space for output
 | |
|    * @return     The function returns either
 | |
|    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 | |
|    *
 | |
|    * @details
 | |
|    *
 | |
|    * <b>Buffer size:</b>
 | |
|    *
 | |
|    * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
 | |
|    *
 | |
|    * bufferB size: 0
 | |
|    *
 | |
|    * <b>Input dimension constraints:</b>
 | |
|    *
 | |
|    * ch_im_in is multiple of 2 
 | |
|    *
 | |
|    * ch_im_out is multipe of 2
 | |
|    *
 | |
|    */
 | |
| 
 | |
|     arm_status
 | |
|     arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in,
 | |
|                               const uint16_t dim_im_in_x,
 | |
|                               const uint16_t dim_im_in_y,
 | |
|                               const uint16_t ch_im_in,
 | |
|                               const q15_t * wt,
 | |
|                               const uint16_t ch_im_out,
 | |
|                               const uint16_t dim_kernel_x,
 | |
|                               const uint16_t dim_kernel_y,
 | |
|                               const uint16_t padding_x,
 | |
|                               const uint16_t padding_y,
 | |
|                               const uint16_t stride_x,
 | |
|                               const uint16_t stride_y,
 | |
|                               const q15_t * bias,
 | |
|                               const uint16_t bias_shift,
 | |
|                               const uint16_t out_shift,
 | |
|                               q15_t * Im_out,
 | |
|                               const uint16_t dim_im_out_x,
 | |
|                               const uint16_t dim_im_out_y, 
 | |
|                               q15_t * bufferA, 
 | |
|                               q7_t * bufferB);
 | |
| 										 
 | |
|   /**
 | |
|    * @brief Q7 depthwise separable convolution function
 | |
|    * @param[in]       Im_in       pointer to input tensor
 | |
|    * @param[in]       dim_im_in   input tensor dimention
 | |
|    * @param[in]       ch_im_in    number of input tensor channels
 | |
|    * @param[in]       wt          pointer to kernel weights
 | |
|    * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
 | |
|    * @param[in]       dim_kernel  filter kernel size
 | |
|    * @param[in]       padding     padding sizes
 | |
|    * @param[in]       stride      convolution stride
 | |
|    * @param[in]       bias        pointer to bias
 | |
|    * @param[in]       bias_shift  amount of left-shift for bias
 | |
|    * @param[in]       out_shift   amount of right-shift for output
 | |
|    * @param[in,out]   Im_out      pointer to output tensor
 | |
|    * @param[in]       dim_im_out  output tensor dimension
 | |
|    * @param[in,out]   bufferA     pointer to buffer space for input 
 | |
|    * @param[in,out]   bufferB     pointer to buffer space for output
 | |
|    * @return     The function returns either
 | |
|    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 | |
|    *
 | |
|    * This function is the version with full list of optimization tricks, but with
 | |
|    * some contraints:
 | |
|    *   ch_im_in is multiple of 2
 | |
|    *   ch_im_out is multiple of 2
 | |
|    */
 | |
| 
 | |
|     arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in,
 | |
|                                                    const uint16_t dim_im_in,
 | |
|                                                    const uint16_t ch_im_in,
 | |
|                                                    const q7_t * wt,
 | |
|                                                    const uint16_t ch_im_out,
 | |
|                                                    const uint16_t dim_kernel,
 | |
|                                                    const uint16_t padding,
 | |
|                                                    const uint16_t stride,
 | |
|                                                    const q7_t * bias,
 | |
|                                                    const uint16_t bias_shift,
 | |
|                                                    const uint16_t out_shift,
 | |
|                                                    q7_t * Im_out,
 | |
|                                                    const uint16_t dim_im_out, 
 | |
|                                                    q15_t * bufferA, 
 | |
|                                                    q7_t * bufferB);
 | |
| 
 | |
|   /**
 | |
|    * @brief Q7 depthwise separable convolution function (non-square shape)
 | |
|    * @param[in]       Im_in         pointer to input tensor
 | |
|    * @param[in]       dim_im_in_x   input tensor dimention x
 | |
|    * @param[in]       dim_im_in_y   input tensor dimention y
 | |
|    * @param[in]       ch_im_in      number of input tensor channels
 | |
|    * @param[in]       wt            pointer to kernel weights
 | |
|    * @param[in]       ch_im_out     number of filters, i.e., output tensor channels
 | |
|    * @param[in]       dim_kernel_x  filter kernel size x
 | |
|    * @param[in]       dim_kernel_y  filter kernel size y
 | |
|    * @param[in]       padding_x     padding sizes x
 | |
|    * @param[in]       padding_y     padding sizes y
 | |
|    * @param[in]       stride_x      convolution stride x
 | |
|    * @param[in]       stride_y      convolution stride y
 | |
|    * @param[in]       bias          pointer to bias
 | |
|    * @param[in]       bias_shift    amount of left-shift for bias
 | |
|    * @param[in]       out_shift     amount of right-shift for output
 | |
|    * @param[in,out]   Im_out        pointer to output tensor
 | |
|    * @param[in]       dim_im_out_x  output tensor dimension x
 | |
|    * @param[in]       dim_im_out_y  output tensor dimension y
 | |
|    * @param[in,out]   bufferA       pointer to buffer space for input 
 | |
|    * @param[in,out]   bufferB       pointer to buffer space for output
 | |
|    * @return     The function returns either
 | |
|    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 | |
|    *
 | |
|    * This function is the version with full list of optimization tricks, but with
 | |
|    * some contraints:
 | |
|    *   ch_im_in is multiple of 2
 | |
|    *   ch_im_out is multiple of 2
 | |
|    */
 | |
|     arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in,
 | |
|                                                              const uint16_t dim_im_in_x,
 | |
|                                                              const uint16_t dim_im_in_y,
 | |
|                                                              const uint16_t ch_im_in,
 | |
|                                                              const q7_t * wt,
 | |
|                                                              const uint16_t ch_im_out,
 | |
|                                                              const uint16_t dim_kernel_x,
 | |
|                                                              const uint16_t dim_kernel_y,
 | |
|                                                              const uint16_t padding_x,
 | |
|                                                              const uint16_t padding_y,
 | |
|                                                              const uint16_t stride_x,
 | |
|                                                              const uint16_t stride_y,
 | |
|                                                              const q7_t * bias,
 | |
|                                                              const uint16_t bias_shift,
 | |
|                                                              const uint16_t out_shift,
 | |
|                                                              q7_t * Im_out,
 | |
|                                                              const uint16_t dim_im_out_x,
 | |
|                                                              const uint16_t dim_im_out_y,
 | |
|                                                              q15_t * bufferA,
 | |
|                                                              q7_t * bufferB);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * @defgroup FC Fully-connected Layer Functions
 | |
|  *
 | |
|  * Perform fully-connected layer
 | |
|  *
 | |
|  * Fully-connected layer is basically a matrix-vector multiplication
 | |
|  * with bias. The matrix is the weights and the input/output vectors
 | |
|  * are the activation values. Supported {weight, activation} precisions
 | |
|  * include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}.
 | |
|  *
 | |
|  * Here we have two types of kernel functions. The basic function
 | |
|  * implements the function using regular GEMV approach. The opt functions
 | |
|  * operates with weights in interleaved formats. 
 | |
|  *
 | |
|  */
 | |
| 
 | |
|   /**
 | |
|    * @brief Q7 basic fully-connected layer function
 | |
|    * @param[in]       pV          pointer to input vector
 | |
|    * @param[in]       pM          pointer to matrix weights
 | |
|    * @param[in]       dim_vec     length of the vector
 | |
|    * @param[in]       num_of_rows number of rows in weight matrix
 | |
|    * @param[in]       bias_shift  amount of left-shift for bias
 | |
|    * @param[in]       out_shift   amount of right-shift for output
 | |
|    * @param[in]       bias        pointer to bias
 | |
|    * @param[in,out]   pOut        pointer to output vector
 | |
|    * @param[in,out]   vec_buffer  pointer to buffer space for input
 | |
|    * @return     The function returns <code>ARM_MATH_SUCCESS</code>
 | |
|    *
 | |
|    */
 | |
| 
 | |
|     arm_status arm_fully_connected_q7(const q7_t * pV,
 | |
|                                       const q7_t * pM,
 | |
|                                       const uint16_t dim_vec,
 | |
|                                       const uint16_t num_of_rows,
 | |
|                                       const uint16_t bias_shift,
 | |
|                                       const uint16_t out_shift, 
 | |
|                                       const q7_t * bias, 
 | |
|                                       q7_t * pOut, 
 | |
|                                       q15_t * vec_buffer);
 | |
| 
 | |
|   /**
 | |
|    * @brief Q7 opt fully-connected layer function
 | |
|    * @param[in]       pV          pointer to input vector
 | |
|    * @param[in]       pM          pointer to matrix weights
 | |
|    * @param[in]       dim_vec     length of the vector
 | |
|    * @param[in]       num_of_rows number of rows in weight matrix
 | |
|    * @param[in]       bias_shift  amount of left-shift for bias
 | |
|    * @param[in]       out_shift   amount of right-shift for output
 | |
|    * @param[in]       bias        pointer to bias
 | |
|    * @param[in,out]   pOut        pointer to output vector
 | |
|    * @param[in,out]   vec_buffer  pointer to buffer space for input
 | |
|    * @return     The function returns <code>ARM_MATH_SUCCESS</code>
 | |
|    *
 | |
|    */
 | |
| 
 | |
|     arm_status arm_fully_connected_q7_opt(const q7_t * pV,
 | |
|                                           const q7_t * pM,
 | |
|                                           const uint16_t dim_vec,
 | |
|                                           const uint16_t num_of_rows,
 | |
|                                           const uint16_t bias_shift,
 | |
|                                           const uint16_t out_shift, 
 | |
|                                           const q7_t * bias, 
 | |
|                                           q7_t * pOut, 
 | |
|                                           q15_t * vec_buffer);
 | |
| 
 | |
|   /**
 | |
|    * @brief Q15 basic fully-connected layer function
 | |
|    * @param[in]       pV          pointer to input vector
 | |
|    * @param[in]       pM          pointer to matrix weights
 | |
|    * @param[in]       dim_vec     length of the vector
 | |
|    * @param[in]       num_of_rows number of rows in weight matrix
 | |
|    * @param[in]       bias_shift  amount of left-shift for bias
 | |
|    * @param[in]       out_shift   amount of right-shift for output
 | |
|    * @param[in]       bias        pointer to bias
 | |
|    * @param[in,out]   pOut        pointer to output vector
 | |
|    * @param[in,out]   vec_buffer  pointer to buffer space for input
 | |
|    * @return     The function returns <code>ARM_MATH_SUCCESS</code>
 | |
|    *
 | |
|    */
 | |
| 
 | |
|     arm_status arm_fully_connected_q15(const q15_t * pV,
 | |
|                                        const q15_t * pM,
 | |
|                                        const uint16_t dim_vec,
 | |
|                                        const uint16_t num_of_rows,
 | |
|                                        const uint16_t bias_shift,
 | |
|                                        const uint16_t out_shift, 
 | |
|                                        const q15_t * bias, 
 | |
|                                        q15_t * pOut, 
 | |
|                                        q15_t * vec_buffer);
 | |
| 
 | |
|   /**
 | |
|    * @brief Q15 opt fully-connected layer function
 | |
|    * @param[in]       pV          pointer to input vector
 | |
|    * @param[in]       pM          pointer to matrix weights
 | |
|    * @param[in]       dim_vec     length of the vector
 | |
|    * @param[in]       num_of_rows number of rows in weight matrix
 | |
|    * @param[in]       bias_shift  amount of left-shift for bias
 | |
|    * @param[in]       out_shift   amount of right-shift for output
 | |
|    * @param[in]       bias        pointer to bias
 | |
|    * @param[in,out]   pOut        pointer to output vector
 | |
|    * @param[in,out]   vec_buffer  pointer to buffer space for input
 | |
|    * @return     The function returns <code>ARM_MATH_SUCCESS</code>
 | |
|    *
 | |
|    */
 | |
| 
 | |
|     arm_status arm_fully_connected_q15_opt(const q15_t * pV,
 | |
|                                            const q15_t * pM,
 | |
|                                            const uint16_t dim_vec,
 | |
|                                            const uint16_t num_of_rows,
 | |
|                                            const uint16_t bias_shift,
 | |
|                                            const uint16_t out_shift,
 | |
|                                            const q15_t * bias, 
 | |
|                                            q15_t * pOut, 
 | |
|                                            q15_t * vec_buffer);
 | |
| 
 | |
|   /**
 | |
|    * @brief Mixed Q15-Q7 fully-connected layer function
 | |
|    * @param[in]       pV          pointer to input vector
 | |
|    * @param[in]       pM          pointer to matrix weights
 | |
|    * @param[in]       dim_vec     length of the vector
 | |
|    * @param[in]       num_of_rows number of rows in weight matrix
 | |
|    * @param[in]       bias_shift  amount of left-shift for bias
 | |
|    * @param[in]       out_shift   amount of right-shift for output
 | |
|    * @param[in]       bias        pointer to bias
 | |
|    * @param[in,out]   pOut        pointer to output vector
 | |
|    * @param[in,out]   vec_buffer  pointer to buffer space for input
 | |
|    * @return     The function returns <code>ARM_MATH_SUCCESS</code>
 | |
|    *
 | |
|    */
 | |
| 
 | |
|     arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t * pV,
 | |
|                                                   const q7_t * pM,
 | |
|                                                   const uint16_t dim_vec,
 | |
|                                                   const uint16_t num_of_rows,
 | |
|                                                   const uint16_t bias_shift,
 | |
|                                                   const uint16_t out_shift,
 | |
|                                                   const q7_t * bias, 
 | |
|                                                   q15_t * pOut, 
 | |
|                                                   q15_t * vec_buffer);
 | |
| 
 | |
|   /**
 | |
|    * @brief Mixed Q15-Q7 opt fully-connected layer function
 | |
|    * @param[in]       pV          pointer to input vector
 | |
|    * @param[in]       pM          pointer to matrix weights
 | |
|    * @param[in]       dim_vec     length of the vector
 | |
|    * @param[in]       num_of_rows number of rows in weight matrix
 | |
|    * @param[in]       bias_shift  amount of left-shift for bias
 | |
|    * @param[in]       out_shift   amount of right-shift for output
 | |
|    * @param[in]       bias        pointer to bias
 | |
|    * @param[in,out]   pOut        pointer to output vector
 | |
|    * @param[in,out]   vec_buffer  pointer to buffer space for input
 | |
|    * @return     The function returns <code>ARM_MATH_SUCCESS</code>
 | |
|    *
 | |
|    */
 | |
| 
 | |
|     arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t * pV,
 | |
|                                                       const q7_t * pM,
 | |
|                                                       const uint16_t dim_vec,
 | |
|                                                       const uint16_t num_of_rows,
 | |
|                                                       const uint16_t bias_shift,
 | |
|                                                       const uint16_t out_shift,
 | |
|                                                       const q7_t * bias, 
 | |
|                                                       q15_t * pOut, 
 | |
|                                                       q15_t * vec_buffer);
 | |
| 
 | |
| /**
 | |
|  * @brief Matrix-Multiplication Kernels for Convolution
 | |
|  *
 | |
|  * These functions are used within convolution layer functions for 
 | |
|  * matrix multiplication.
 | |
|  * 
 | |
|  * The implementation is similar to CMSIS-DSP arm_mat_mult functions
 | |
|  * with one Q7 and one Q15 operands. The Q15 operand is the im2col
 | |
|  * output which is always with 2 columns.
 | |
|  *
 | |
|  */
 | |
| 
 | |
|   /**
 | |
|    * @brief Matrix-multiplication function for convolution
 | |
|    * @param[in]       pA          pointer to operand A
 | |
|    * @param[in]       pInBuffer   pointer to operand B, always conssists of 2 vectors
 | |
|    * @param[in]       ch_im_out   numRow of A
 | |
|    * @param[in]       numCol_A    numCol of A
 | |
|    * @param[in]       bias_shift  amount of left-shift for bias
 | |
|    * @param[in]       out_shift   amount of right-shift for output
 | |
|    * @param[in]       bias        the bias
 | |
|    * @param[in,out]   pOut        pointer to output
 | |
|    * @return     The function returns the incremented output pointer
 | |
|    */
 | |
| 
 | |
|     q7_t     *arm_nn_mat_mult_kernel_q7_q15(const q7_t * pA,
 | |
|                                             const q15_t * pInBuffer,
 | |
|                                             const uint16_t ch_im_out,
 | |
|                                             const uint16_t numCol_A,
 | |
|                                             const uint16_t bias_shift,
 | |
|                                             const uint16_t out_shift, 
 | |
|                                             const q7_t * bias, 
 | |
|                                             q7_t * pOut);
 | |
| 
 | |
|   /**
 | |
|    * @brief Matrix-multiplication function for convolution with reordered columns
 | |
|    * @param[in]       pA          pointer to operand A
 | |
|    * @param[in]       pInBuffer   pointer to operand B, always conssists of 2 vectors
 | |
|    * @param[in]       ch_im_out   numRow of A
 | |
|    * @param[in]       numCol_A    numCol of A
 | |
|    * @param[in]       bias_shift  amount of left-shift for bias
 | |
|    * @param[in]       out_shift   amount of right-shift for output
 | |
|    * @param[in]       bias        the bias
 | |
|    * @param[in,out]   pOut        pointer to output
 | |
|    * @return     The function returns the incremented output pointer
 | |
|    */
 | |
| 
 | |
|     q7_t     *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t * pA,
 | |
|                                                       const q15_t * pInBuffer,
 | |
|                                                       const uint16_t ch_im_out,
 | |
|                                                       const uint16_t numCol_A,
 | |
|                                                       const uint16_t bias_shift,
 | |
|                                                       const uint16_t out_shift, 
 | |
|                                                       const q7_t * bias, 
 | |
|                                                       q7_t * pOut);
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  *  Other functions
 | |
|  *  These layers are typically not timing critical
 | |
|  *  Basic implementation is supported here
 | |
|  */
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| extern    "C"
 | |
| {
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * @defgroup Acti Neural Network Activation Functions
 | |
|  *
 | |
|  * Perform activation layers, including ReLU (Rectified Linear Unit),
 | |
|  * sigmoid and tanh
 | |
|  *
 | |
|  */
 | |
| 
 | |
|   /**
 | |
|    * @brief Q7 RELU function
 | |
|    * @param[in,out]   data        pointer to input
 | |
|    * @param[in]       size        number of elements
 | |
|    * @return none.
 | |
|    */
 | |
| 
 | |
|     void      arm_relu_q7(q7_t * data, uint16_t size);
 | |
| 
 | |
|   /**
 | |
|    * @brief Q15 RELU function
 | |
|    * @param[in,out]   data        pointer to input
 | |
|    * @param[in]       size        number of elements
 | |
|    * @return none.
 | |
|    */
 | |
| 
 | |
|     void      arm_relu_q15(q15_t * data, uint16_t size);
 | |
| 
 | |
|   /**
 | |
|    * @brief Q7 neural network activation function using direct table look-up
 | |
|    * @param[in,out]   data        pointer to input
 | |
|    * @param[in]       size        number of elements
 | |
|    * @param[in]       int_width   bit-width of the integer part, assume to be smaller than 3
 | |
|    * @param[in]       type        type of activation functions
 | |
|    * @return none.
 | |
|    */
 | |
| 
 | |
|     void      arm_nn_activations_direct_q7(q7_t * data, uint16_t size, uint16_t int_width, 
 | |
|                                            arm_nn_activation_type type);
 | |
| 
 | |
|   /**
 | |
|    * @brief Q15 neural network activation function using direct table look-up
 | |
|    * @param[in,out]   data        pointer to input
 | |
|    * @param[in]       size        number of elements
 | |
|    * @param[in]       int_width   bit-width of the integer part, assume to be smaller than 3
 | |
|    * @param[in]       type        type of activation functions
 | |
|    * @return none.
 | |
|    */
 | |
| 
 | |
|     void      arm_nn_activations_direct_q15(q15_t * data, uint16_t size, uint16_t int_width,
 | |
|                                             arm_nn_activation_type type);
 | |
| 
 | |
| /**
 | |
|  * @defgroup Pooling Neural Network Pooling Functions
 | |
|  *
 | |
|  * Perform pooling functions, including max pooling and average pooling
 | |
|  *
 | |
|  */
 | |
| 
 | |
|   /**
 | |
|    * @brief Q7 max pooling function
 | |
|    * @param[in]       Im_in       pointer to input tensor
 | |
|    * @param[in]       dim_im_in   input tensor dimention
 | |
|    * @param[in]       ch_im_in    number of input tensor channels
 | |
|    * @param[in]       dim_kernel  filter kernel size
 | |
|    * @param[in]       padding     padding sizes
 | |
|    * @param[in]       stride      convolution stride
 | |
|    * @param[in]       dim_im_out  output tensor dimension
 | |
|    * @param[in,out]   bufferA     pointer to buffer space for input
 | |
|    * @param[in,out]   Im_out      pointer to output tensor
 | |
|    * @return none.
 | |
|    *
 | |
|    */
 | |
| 
 | |
|     void      arm_maxpool_q7_HWC(q7_t * Im_in,
 | |
|                                  const uint16_t dim_im_in,
 | |
|                                  const uint16_t ch_im_in,
 | |
|                                  const uint16_t dim_kernel,
 | |
|                                  const uint16_t padding,
 | |
|                                  const uint16_t stride, 
 | |
|                                  const uint16_t dim_im_out, 
 | |
|                                  q7_t * bufferA, 
 | |
|                                  q7_t * Im_out);
 | |
| 
 | |
|   /**
 | |
|    * @brief Q7 average pooling function
 | |
|    * @param[in]       Im_in       pointer to input tensor
 | |
|    * @param[in]       dim_im_in   input tensor dimention
 | |
|    * @param[in]       ch_im_in    number of input tensor channels
 | |
|    * @param[in]       dim_kernel  filter kernel size
 | |
|    * @param[in]       padding     padding sizes
 | |
|    * @param[in]       stride      convolution stride
 | |
|    * @param[in]       dim_im_out  output tensor dimension
 | |
|    * @param[in,out]   bufferA     pointer to buffer space for input
 | |
|    * @param[in,out]   Im_out      pointer to output tensor
 | |
|    * @return none.
 | |
|    *
 | |
|    */
 | |
| 
 | |
|     void      arm_avepool_q7_HWC(q7_t * Im_in,
 | |
|                                  const uint16_t dim_im_in,
 | |
|                                  const uint16_t ch_im_in,
 | |
|                                  const uint16_t dim_kernel,
 | |
|                                  const uint16_t padding,
 | |
|                                  const uint16_t stride, 
 | |
|                                  const uint16_t dim_im_out, 
 | |
|                                  q7_t * bufferA, 
 | |
|                                  q7_t * Im_out);
 | |
| 
 | |
| /**
 | |
|  * @defgroup Softmax Softmax Functions
 | |
|  *
 | |
|  * EXP(2) based softmax function
 | |
|  *
 | |
|  */
 | |
| 
 | |
|   /**
 | |
|    * @brief Q7 softmax function
 | |
|    * @param[in]       vec_in      pointer to input vector
 | |
|    * @param[in]       dim_vec     input vector dimention
 | |
|    * @param[out]      p_out       pointer to output vector
 | |
|    * @return none.
 | |
|    *
 | |
|    */
 | |
| 
 | |
|     void      arm_softmax_q7(const q7_t * vec_in, const uint16_t dim_vec, q7_t * p_out);
 | |
| 
 | |
|   /**
 | |
|    * @brief Q15 softmax function
 | |
|    * @param[in]       vec_in      pointer to input vector
 | |
|    * @param[in]       dim_vec     input vector dimention
 | |
|    * @param[out]      p_out       pointer to output vector
 | |
|    * @return none.
 | |
|    *
 | |
|    */
 | |
| 
 | |
|     void      arm_softmax_q15(const q15_t * vec_in, const uint16_t dim_vec, q15_t * p_out);
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #endif
 |