621 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			621 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
| /* ----------------------------------------------------------------------
 | |
|  * Project:      CMSIS DSP Library
 | |
|  * Title:        arm_cfft_f32.c
 | |
|  * Description:  Combined Radix Decimation in Frequency CFFT Floating point processing function
 | |
|  *
 | |
|  * $Date:        27. January 2017
 | |
|  * $Revision:    V.1.5.1
 | |
|  *
 | |
|  * Target Processor: Cortex-M cores
 | |
|  * -------------------------------------------------------------------- */
 | |
| /*
 | |
|  * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the License); you may
 | |
|  * not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  * www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | |
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #include "arm_math.h"
 | |
| #include "arm_common_tables.h"
 | |
| 
 | |
| extern void arm_radix8_butterfly_f32(
 | |
|     float32_t * pSrc,
 | |
|     uint16_t fftLen,
 | |
|     const float32_t * pCoef,
 | |
|     uint16_t twidCoefModifier);
 | |
| 
 | |
| extern void arm_bitreversal_32(
 | |
|     uint32_t * pSrc,
 | |
|     const uint16_t bitRevLen,
 | |
|     const uint16_t * pBitRevTable);
 | |
| 
 | |
| /**
 | |
| * @ingroup groupTransforms
 | |
| */
 | |
| 
 | |
| /**
 | |
| * @defgroup ComplexFFT Complex FFT Functions
 | |
| *
 | |
| * \par
 | |
| * The Fast Fourier Transform (FFT) is an efficient algorithm for computing the
 | |
| * Discrete Fourier Transform (DFT).  The FFT can be orders of magnitude faster
 | |
| * than the DFT, especially for long lengths.
 | |
| * The algorithms described in this section
 | |
| * operate on complex data.  A separate set of functions is devoted to handling
 | |
| * of real sequences.
 | |
| * \par
 | |
| * There are separate algorithms for handling floating-point, Q15, and Q31 data
 | |
| * types.  The algorithms available for each data type are described next.
 | |
| * \par
 | |
| * The FFT functions operate in-place.  That is, the array holding the input data
 | |
| * will also be used to hold the corresponding result.  The input data is complex
 | |
| * and contains <code>2*fftLen</code> interleaved values as shown below.
 | |
| * <pre> {real[0], imag[0], real[1], imag[1],..} </pre>
 | |
| * The FFT result will be contained in the same array and the frequency domain
 | |
| * values will have the same interleaving.
 | |
| *
 | |
| * \par Floating-point
 | |
| * The floating-point complex FFT uses a mixed-radix algorithm.  Multiple radix-8
 | |
| * stages are performed along with a single radix-2 or radix-4 stage, as needed.
 | |
| * The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
 | |
| * a different twiddle factor table.
 | |
| * \par
 | |
| * The function uses the standard FFT definition and output values may grow by a
 | |
| * factor of <code>fftLen</code> when computing the forward transform.  The
 | |
| * inverse transform includes a scale of <code>1/fftLen</code> as part of the
 | |
| * calculation and this matches the textbook definition of the inverse FFT.
 | |
| * \par
 | |
| * Pre-initialized data structures containing twiddle factors and bit reversal
 | |
| * tables are provided and defined in <code>arm_const_structs.h</code>.  Include
 | |
| * this header in your function and then pass one of the constant structures as
 | |
| * an argument to arm_cfft_f32.  For example:
 | |
| * \par
 | |
| * <code>arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)</code>
 | |
| * \par
 | |
| * computes a 64-point inverse complex FFT including bit reversal.
 | |
| * The data structures are treated as constant data and not modified during the
 | |
| * calculation.  The same data structure can be reused for multiple transforms
 | |
| * including mixing forward and inverse transforms.
 | |
| * \par
 | |
| * Earlier releases of the library provided separate radix-2 and radix-4
 | |
| * algorithms that operated on floating-point data.  These functions are still
 | |
| * provided but are deprecated.  The older functions are slower and less general
 | |
| * than the new functions.
 | |
| * \par
 | |
| * An example of initialization of the constants for the arm_cfft_f32 function follows:
 | |
| * \code
 | |
| * const static arm_cfft_instance_f32 *S;
 | |
| * ...
 | |
| *   switch (length) {
 | |
| *     case 16:
 | |
| *       S = &arm_cfft_sR_f32_len16;
 | |
| *       break;
 | |
| *     case 32:
 | |
| *       S = &arm_cfft_sR_f32_len32;
 | |
| *       break;
 | |
| *     case 64:
 | |
| *       S = &arm_cfft_sR_f32_len64;
 | |
| *       break;
 | |
| *     case 128:
 | |
| *       S = &arm_cfft_sR_f32_len128;
 | |
| *       break;
 | |
| *     case 256:
 | |
| *       S = &arm_cfft_sR_f32_len256;
 | |
| *       break;
 | |
| *     case 512:
 | |
| *       S = &arm_cfft_sR_f32_len512;
 | |
| *       break;
 | |
| *     case 1024:
 | |
| *       S = &arm_cfft_sR_f32_len1024;
 | |
| *       break;
 | |
| *     case 2048:
 | |
| *       S = &arm_cfft_sR_f32_len2048;
 | |
| *       break;
 | |
| *     case 4096:
 | |
| *       S = &arm_cfft_sR_f32_len4096;
 | |
| *       break;
 | |
| *   }
 | |
| * \endcode
 | |
| * \par Q15 and Q31
 | |
| * The floating-point complex FFT uses a mixed-radix algorithm.  Multiple radix-4
 | |
| * stages are performed along with a single radix-2 stage, as needed.
 | |
| * The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
 | |
| * a different twiddle factor table.
 | |
| * \par
 | |
| * The function uses the standard FFT definition and output values may grow by a
 | |
| * factor of <code>fftLen</code> when computing the forward transform.  The
 | |
| * inverse transform includes a scale of <code>1/fftLen</code> as part of the
 | |
| * calculation and this matches the textbook definition of the inverse FFT.
 | |
| * \par
 | |
| * Pre-initialized data structures containing twiddle factors and bit reversal
 | |
| * tables are provided and defined in <code>arm_const_structs.h</code>.  Include
 | |
| * this header in your function and then pass one of the constant structures as
 | |
| * an argument to arm_cfft_q31.  For example:
 | |
| * \par
 | |
| * <code>arm_cfft_q31(arm_cfft_sR_q31_len64, pSrc, 1, 1)</code>
 | |
| * \par
 | |
| * computes a 64-point inverse complex FFT including bit reversal.
 | |
| * The data structures are treated as constant data and not modified during the
 | |
| * calculation.  The same data structure can be reused for multiple transforms
 | |
| * including mixing forward and inverse transforms.
 | |
| * \par
 | |
| * Earlier releases of the library provided separate radix-2 and radix-4
 | |
| * algorithms that operated on floating-point data.  These functions are still
 | |
| * provided but are deprecated.  The older functions are slower and less general
 | |
| * than the new functions.
 | |
| * \par
 | |
| * An example of initialization of the constants for the arm_cfft_q31 function follows:
 | |
| * \code
 | |
| * const static arm_cfft_instance_q31 *S;
 | |
| * ...
 | |
| *   switch (length) {
 | |
| *     case 16:
 | |
| *       S = &arm_cfft_sR_q31_len16;
 | |
| *       break;
 | |
| *     case 32:
 | |
| *       S = &arm_cfft_sR_q31_len32;
 | |
| *       break;
 | |
| *     case 64:
 | |
| *       S = &arm_cfft_sR_q31_len64;
 | |
| *       break;
 | |
| *     case 128:
 | |
| *       S = &arm_cfft_sR_q31_len128;
 | |
| *       break;
 | |
| *     case 256:
 | |
| *       S = &arm_cfft_sR_q31_len256;
 | |
| *       break;
 | |
| *     case 512:
 | |
| *       S = &arm_cfft_sR_q31_len512;
 | |
| *       break;
 | |
| *     case 1024:
 | |
| *       S = &arm_cfft_sR_q31_len1024;
 | |
| *       break;
 | |
| *     case 2048:
 | |
| *       S = &arm_cfft_sR_q31_len2048;
 | |
| *       break;
 | |
| *     case 4096:
 | |
| *       S = &arm_cfft_sR_q31_len4096;
 | |
| *       break;
 | |
| *   }
 | |
| * \endcode
 | |
| *
 | |
| */
 | |
| 
 | |
| void arm_cfft_radix8by2_f32( arm_cfft_instance_f32 * S, float32_t * p1)
 | |
| {
 | |
|     uint32_t    L  = S->fftLen;
 | |
|     float32_t * pCol1, * pCol2, * pMid1, * pMid2;
 | |
|     float32_t * p2 = p1 + L;
 | |
|     const float32_t * tw = (float32_t *) S->pTwiddle;
 | |
|     float32_t t1[4], t2[4], t3[4], t4[4], twR, twI;
 | |
|     float32_t m0, m1, m2, m3;
 | |
|     uint32_t l;
 | |
| 
 | |
|     pCol1 = p1;
 | |
|     pCol2 = p2;
 | |
| 
 | |
|     //    Define new length
 | |
|     L >>= 1;
 | |
|     //    Initialize mid pointers
 | |
|     pMid1 = p1 + L;
 | |
|     pMid2 = p2 + L;
 | |
| 
 | |
|     // do two dot Fourier transform
 | |
|     for ( l = L >> 2; l > 0; l-- )
 | |
|     {
 | |
|         t1[0] = p1[0];
 | |
|         t1[1] = p1[1];
 | |
|         t1[2] = p1[2];
 | |
|         t1[3] = p1[3];
 | |
| 
 | |
|         t2[0] = p2[0];
 | |
|         t2[1] = p2[1];
 | |
|         t2[2] = p2[2];
 | |
|         t2[3] = p2[3];
 | |
| 
 | |
|         t3[0] = pMid1[0];
 | |
|         t3[1] = pMid1[1];
 | |
|         t3[2] = pMid1[2];
 | |
|         t3[3] = pMid1[3];
 | |
| 
 | |
|         t4[0] = pMid2[0];
 | |
|         t4[1] = pMid2[1];
 | |
|         t4[2] = pMid2[2];
 | |
|         t4[3] = pMid2[3];
 | |
| 
 | |
|         *p1++ = t1[0] + t2[0];
 | |
|         *p1++ = t1[1] + t2[1];
 | |
|         *p1++ = t1[2] + t2[2];
 | |
|         *p1++ = t1[3] + t2[3];    // col 1
 | |
| 
 | |
|         t2[0] = t1[0] - t2[0];
 | |
|         t2[1] = t1[1] - t2[1];
 | |
|         t2[2] = t1[2] - t2[2];
 | |
|         t2[3] = t1[3] - t2[3];    // for col 2
 | |
| 
 | |
|         *pMid1++ = t3[0] + t4[0];
 | |
|         *pMid1++ = t3[1] + t4[1];
 | |
|         *pMid1++ = t3[2] + t4[2];
 | |
|         *pMid1++ = t3[3] + t4[3]; // col 1
 | |
| 
 | |
|         t4[0] = t4[0] - t3[0];
 | |
|         t4[1] = t4[1] - t3[1];
 | |
|         t4[2] = t4[2] - t3[2];
 | |
|         t4[3] = t4[3] - t3[3];    // for col 2
 | |
| 
 | |
|         twR = *tw++;
 | |
|         twI = *tw++;
 | |
| 
 | |
|         // multiply by twiddle factors
 | |
|         m0 = t2[0] * twR;
 | |
|         m1 = t2[1] * twI;
 | |
|         m2 = t2[1] * twR;
 | |
|         m3 = t2[0] * twI;
 | |
| 
 | |
|         // R  =  R  *  Tr - I * Ti
 | |
|         *p2++ = m0 + m1;
 | |
|         // I  =  I  *  Tr + R * Ti
 | |
|         *p2++ = m2 - m3;
 | |
| 
 | |
|         // use vertical symmetry
 | |
|         //  0.9988 - 0.0491i <==> -0.0491 - 0.9988i
 | |
|         m0 = t4[0] * twI;
 | |
|         m1 = t4[1] * twR;
 | |
|         m2 = t4[1] * twI;
 | |
|         m3 = t4[0] * twR;
 | |
| 
 | |
|         *pMid2++ = m0 - m1;
 | |
|         *pMid2++ = m2 + m3;
 | |
| 
 | |
|         twR = *tw++;
 | |
|         twI = *tw++;
 | |
| 
 | |
|         m0 = t2[2] * twR;
 | |
|         m1 = t2[3] * twI;
 | |
|         m2 = t2[3] * twR;
 | |
|         m3 = t2[2] * twI;
 | |
| 
 | |
|         *p2++ = m0 + m1;
 | |
|         *p2++ = m2 - m3;
 | |
| 
 | |
|         m0 = t4[2] * twI;
 | |
|         m1 = t4[3] * twR;
 | |
|         m2 = t4[3] * twI;
 | |
|         m3 = t4[2] * twR;
 | |
| 
 | |
|         *pMid2++ = m0 - m1;
 | |
|         *pMid2++ = m2 + m3;
 | |
|     }
 | |
| 
 | |
|     // first col
 | |
|     arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 2U);
 | |
|     // second col
 | |
|     arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 2U);
 | |
| }
 | |
| 
 | |
| void arm_cfft_radix8by4_f32( arm_cfft_instance_f32 * S, float32_t * p1)
 | |
| {
 | |
|     uint32_t    L  = S->fftLen >> 1;
 | |
|     float32_t * pCol1, *pCol2, *pCol3, *pCol4, *pEnd1, *pEnd2, *pEnd3, *pEnd4;
 | |
|     const float32_t *tw2, *tw3, *tw4;
 | |
|     float32_t * p2 = p1 + L;
 | |
|     float32_t * p3 = p2 + L;
 | |
|     float32_t * p4 = p3 + L;
 | |
|     float32_t t2[4], t3[4], t4[4], twR, twI;
 | |
|     float32_t p1ap3_0, p1sp3_0, p1ap3_1, p1sp3_1;
 | |
|     float32_t m0, m1, m2, m3;
 | |
|     uint32_t l, twMod2, twMod3, twMod4;
 | |
| 
 | |
|     pCol1 = p1;         // points to real values by default
 | |
|     pCol2 = p2;
 | |
|     pCol3 = p3;
 | |
|     pCol4 = p4;
 | |
|     pEnd1 = p2 - 1;     // points to imaginary values by default
 | |
|     pEnd2 = p3 - 1;
 | |
|     pEnd3 = p4 - 1;
 | |
|     pEnd4 = pEnd3 + L;
 | |
| 
 | |
|     tw2 = tw3 = tw4 = (float32_t *) S->pTwiddle;
 | |
| 
 | |
|     L >>= 1;
 | |
| 
 | |
|     // do four dot Fourier transform
 | |
| 
 | |
|     twMod2 = 2;
 | |
|     twMod3 = 4;
 | |
|     twMod4 = 6;
 | |
| 
 | |
|     // TOP
 | |
|     p1ap3_0 = p1[0] + p3[0];
 | |
|     p1sp3_0 = p1[0] - p3[0];
 | |
|     p1ap3_1 = p1[1] + p3[1];
 | |
|     p1sp3_1 = p1[1] - p3[1];
 | |
| 
 | |
|     // col 2
 | |
|     t2[0] = p1sp3_0 + p2[1] - p4[1];
 | |
|     t2[1] = p1sp3_1 - p2[0] + p4[0];
 | |
|     // col 3
 | |
|     t3[0] = p1ap3_0 - p2[0] - p4[0];
 | |
|     t3[1] = p1ap3_1 - p2[1] - p4[1];
 | |
|     // col 4
 | |
|     t4[0] = p1sp3_0 - p2[1] + p4[1];
 | |
|     t4[1] = p1sp3_1 + p2[0] - p4[0];
 | |
|     // col 1
 | |
|     *p1++ = p1ap3_0 + p2[0] + p4[0];
 | |
|     *p1++ = p1ap3_1 + p2[1] + p4[1];
 | |
| 
 | |
|     // Twiddle factors are ones
 | |
|     *p2++ = t2[0];
 | |
|     *p2++ = t2[1];
 | |
|     *p3++ = t3[0];
 | |
|     *p3++ = t3[1];
 | |
|     *p4++ = t4[0];
 | |
|     *p4++ = t4[1];
 | |
| 
 | |
|     tw2 += twMod2;
 | |
|     tw3 += twMod3;
 | |
|     tw4 += twMod4;
 | |
| 
 | |
|     for (l = (L - 2) >> 1; l > 0; l-- )
 | |
|     {
 | |
|         // TOP
 | |
|         p1ap3_0 = p1[0] + p3[0];
 | |
|         p1sp3_0 = p1[0] - p3[0];
 | |
|         p1ap3_1 = p1[1] + p3[1];
 | |
|         p1sp3_1 = p1[1] - p3[1];
 | |
|         // col 2
 | |
|         t2[0] = p1sp3_0 + p2[1] - p4[1];
 | |
|         t2[1] = p1sp3_1 - p2[0] + p4[0];
 | |
|         // col 3
 | |
|         t3[0] = p1ap3_0 - p2[0] - p4[0];
 | |
|         t3[1] = p1ap3_1 - p2[1] - p4[1];
 | |
|         // col 4
 | |
|         t4[0] = p1sp3_0 - p2[1] + p4[1];
 | |
|         t4[1] = p1sp3_1 + p2[0] - p4[0];
 | |
|         // col 1 - top
 | |
|         *p1++ = p1ap3_0 + p2[0] + p4[0];
 | |
|         *p1++ = p1ap3_1 + p2[1] + p4[1];
 | |
| 
 | |
|         // BOTTOM
 | |
|         p1ap3_1 = pEnd1[-1] + pEnd3[-1];
 | |
|         p1sp3_1 = pEnd1[-1] - pEnd3[-1];
 | |
|         p1ap3_0 = pEnd1[0] + pEnd3[0];
 | |
|         p1sp3_0 = pEnd1[0] - pEnd3[0];
 | |
|         // col 2
 | |
|         t2[2] = pEnd2[0]  - pEnd4[0] + p1sp3_1;
 | |
|         t2[3] = pEnd1[0] - pEnd3[0] - pEnd2[-1] + pEnd4[-1];
 | |
|         // col 3
 | |
|         t3[2] = p1ap3_1 - pEnd2[-1] - pEnd4[-1];
 | |
|         t3[3] = p1ap3_0 - pEnd2[0]  - pEnd4[0];
 | |
|         // col 4
 | |
|         t4[2] = pEnd2[0]  - pEnd4[0]  - p1sp3_1;
 | |
|         t4[3] = pEnd4[-1] - pEnd2[-1] - p1sp3_0;
 | |
|         // col 1 - Bottom
 | |
|         *pEnd1-- = p1ap3_0 + pEnd2[0] + pEnd4[0];
 | |
|         *pEnd1-- = p1ap3_1 + pEnd2[-1] + pEnd4[-1];
 | |
| 
 | |
|         // COL 2
 | |
|         // read twiddle factors
 | |
|         twR = *tw2++;
 | |
|         twI = *tw2++;
 | |
|         // multiply by twiddle factors
 | |
|         //  let    Z1 = a + i(b),   Z2 = c + i(d)
 | |
|         //   =>  Z1 * Z2  =  (a*c - b*d) + i(b*c + a*d)
 | |
| 
 | |
|         // Top
 | |
|         m0 = t2[0] * twR;
 | |
|         m1 = t2[1] * twI;
 | |
|         m2 = t2[1] * twR;
 | |
|         m3 = t2[0] * twI;
 | |
| 
 | |
|         *p2++ = m0 + m1;
 | |
|         *p2++ = m2 - m3;
 | |
|         // use vertical symmetry col 2
 | |
|         // 0.9997 - 0.0245i  <==>  0.0245 - 0.9997i
 | |
|         // Bottom
 | |
|         m0 = t2[3] * twI;
 | |
|         m1 = t2[2] * twR;
 | |
|         m2 = t2[2] * twI;
 | |
|         m3 = t2[3] * twR;
 | |
| 
 | |
|         *pEnd2-- = m0 - m1;
 | |
|         *pEnd2-- = m2 + m3;
 | |
| 
 | |
|         // COL 3
 | |
|         twR = tw3[0];
 | |
|         twI = tw3[1];
 | |
|         tw3 += twMod3;
 | |
|         // Top
 | |
|         m0 = t3[0] * twR;
 | |
|         m1 = t3[1] * twI;
 | |
|         m2 = t3[1] * twR;
 | |
|         m3 = t3[0] * twI;
 | |
| 
 | |
|         *p3++ = m0 + m1;
 | |
|         *p3++ = m2 - m3;
 | |
|         // use vertical symmetry col 3
 | |
|         // 0.9988 - 0.0491i  <==>  -0.9988 - 0.0491i
 | |
|         // Bottom
 | |
|         m0 = -t3[3] * twR;
 | |
|         m1 = t3[2] * twI;
 | |
|         m2 = t3[2] * twR;
 | |
|         m3 = t3[3] * twI;
 | |
| 
 | |
|         *pEnd3-- = m0 - m1;
 | |
|         *pEnd3-- = m3 - m2;
 | |
| 
 | |
|         // COL 4
 | |
|         twR = tw4[0];
 | |
|         twI = tw4[1];
 | |
|         tw4 += twMod4;
 | |
|         // Top
 | |
|         m0 = t4[0] * twR;
 | |
|         m1 = t4[1] * twI;
 | |
|         m2 = t4[1] * twR;
 | |
|         m3 = t4[0] * twI;
 | |
| 
 | |
|         *p4++ = m0 + m1;
 | |
|         *p4++ = m2 - m3;
 | |
|         // use vertical symmetry col 4
 | |
|         // 0.9973 - 0.0736i  <==>  -0.0736 + 0.9973i
 | |
|         // Bottom
 | |
|         m0 = t4[3] * twI;
 | |
|         m1 = t4[2] * twR;
 | |
|         m2 = t4[2] * twI;
 | |
|         m3 = t4[3] * twR;
 | |
| 
 | |
|         *pEnd4-- = m0 - m1;
 | |
|         *pEnd4-- = m2 + m3;
 | |
|     }
 | |
| 
 | |
|     //MIDDLE
 | |
|     // Twiddle factors are
 | |
|     //  1.0000  0.7071-0.7071i  -1.0000i  -0.7071-0.7071i
 | |
|     p1ap3_0 = p1[0] + p3[0];
 | |
|     p1sp3_0 = p1[0] - p3[0];
 | |
|     p1ap3_1 = p1[1] + p3[1];
 | |
|     p1sp3_1 = p1[1] - p3[1];
 | |
| 
 | |
|     // col 2
 | |
|     t2[0] = p1sp3_0 + p2[1] - p4[1];
 | |
|     t2[1] = p1sp3_1 - p2[0] + p4[0];
 | |
|     // col 3
 | |
|     t3[0] = p1ap3_0 - p2[0] - p4[0];
 | |
|     t3[1] = p1ap3_1 - p2[1] - p4[1];
 | |
|     // col 4
 | |
|     t4[0] = p1sp3_0 - p2[1] + p4[1];
 | |
|     t4[1] = p1sp3_1 + p2[0] - p4[0];
 | |
|     // col 1 - Top
 | |
|     *p1++ = p1ap3_0 + p2[0] + p4[0];
 | |
|     *p1++ = p1ap3_1 + p2[1] + p4[1];
 | |
| 
 | |
|     // COL 2
 | |
|     twR = tw2[0];
 | |
|     twI = tw2[1];
 | |
| 
 | |
|     m0 = t2[0] * twR;
 | |
|     m1 = t2[1] * twI;
 | |
|     m2 = t2[1] * twR;
 | |
|     m3 = t2[0] * twI;
 | |
| 
 | |
|     *p2++ = m0 + m1;
 | |
|     *p2++ = m2 - m3;
 | |
|     // COL 3
 | |
|     twR = tw3[0];
 | |
|     twI = tw3[1];
 | |
| 
 | |
|     m0 = t3[0] * twR;
 | |
|     m1 = t3[1] * twI;
 | |
|     m2 = t3[1] * twR;
 | |
|     m3 = t3[0] * twI;
 | |
| 
 | |
|     *p3++ = m0 + m1;
 | |
|     *p3++ = m2 - m3;
 | |
|     // COL 4
 | |
|     twR = tw4[0];
 | |
|     twI = tw4[1];
 | |
| 
 | |
|     m0 = t4[0] * twR;
 | |
|     m1 = t4[1] * twI;
 | |
|     m2 = t4[1] * twR;
 | |
|     m3 = t4[0] * twI;
 | |
| 
 | |
|     *p4++ = m0 + m1;
 | |
|     *p4++ = m2 - m3;
 | |
| 
 | |
|     // first col
 | |
|     arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 4U);
 | |
|     // second col
 | |
|     arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 4U);
 | |
|     // third col
 | |
|     arm_radix8_butterfly_f32( pCol3, L, (float32_t *) S->pTwiddle, 4U);
 | |
|     // fourth col
 | |
|     arm_radix8_butterfly_f32( pCol4, L, (float32_t *) S->pTwiddle, 4U);
 | |
| }
 | |
| 
 | |
| /**
 | |
| * @addtogroup ComplexFFT
 | |
| * @{
 | |
| */
 | |
| 
 | |
| /**
 | |
| * @details
 | |
| * @brief       Processing function for the floating-point complex FFT.
 | |
| * @param[in]      *S    points to an instance of the floating-point CFFT structure.
 | |
| * @param[in, out] *p1   points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.
 | |
| * @param[in]     ifftFlag       flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
 | |
| * @param[in]     bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
 | |
| * @return none.
 | |
| */
 | |
| 
 | |
| void arm_cfft_f32(
 | |
|     const arm_cfft_instance_f32 * S,
 | |
|     float32_t * p1,
 | |
|     uint8_t ifftFlag,
 | |
|     uint8_t bitReverseFlag)
 | |
| {
 | |
|     uint32_t  L = S->fftLen, l;
 | |
|     float32_t invL, * pSrc;
 | |
| 
 | |
|     if (ifftFlag == 1U)
 | |
|     {
 | |
|         /*  Conjugate input data  */
 | |
|         pSrc = p1 + 1;
 | |
|         for(l=0; l<L; l++)
 | |
|         {
 | |
|             *pSrc = -*pSrc;
 | |
|             pSrc += 2;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     switch (L)
 | |
|     {
 | |
|     case 16:
 | |
|     case 128:
 | |
|     case 1024:
 | |
|         arm_cfft_radix8by2_f32  ( (arm_cfft_instance_f32 *) S, p1);
 | |
|         break;
 | |
|     case 32:
 | |
|     case 256:
 | |
|     case 2048:
 | |
|         arm_cfft_radix8by4_f32  ( (arm_cfft_instance_f32 *) S, p1);
 | |
|         break;
 | |
|     case 64:
 | |
|     case 512:
 | |
|     case 4096:
 | |
|         arm_radix8_butterfly_f32( p1, L, (float32_t *) S->pTwiddle, 1);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if ( bitReverseFlag )
 | |
|         arm_bitreversal_32((uint32_t*)p1,S->bitRevLength,S->pBitRevTable);
 | |
| 
 | |
|     if (ifftFlag == 1U)
 | |
|     {
 | |
|         invL = 1.0f/(float32_t)L;
 | |
|         /*  Conjugate and scale output data */
 | |
|         pSrc = p1;
 | |
|         for(l=0; l<L; l++)
 | |
|         {
 | |
|             *pSrc++ *=   invL ;
 | |
|             *pSrc  = -(*pSrc) * invL;
 | |
|             pSrc++;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
| * @} end of ComplexFFT group
 | |
| */
 |