STM32CubeF1/Projects/STM3210C_EVAL/Examples/RTC/RTC_LSI/Src/main.c

358 lines
11 KiB
C

/**
******************************************************************************
* @file RTC/RTC_LSI/Src/main.c
* @author MCD Application Team
* @brief This sample code shows how to use STM32F1xx RTC HAL API to
* use the LSI clock source auto calibration to get a precise RTC
* clock.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F1xx_HAL_Examples
* @{
*/
/** @addtogroup RTC_LSI
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define WAKEUP_TIMER_ENABLE 0x32F2
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
RTC_HandleTypeDef RtcHandle;
TIM_HandleTypeDef Input_Handle;
uint16_t tmpCCTIM_CHANNEL_4[2] = {0, 0};
__IO uint32_t uwLsiFreq = 0;
__IO uint32_t uwCaptureNumber = 0;
__IO uint32_t uwPeriodValue = 0;
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void RTC_Config(void);
static uint32_t GetLSIFrequency(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/* STM32F107xC HAL library initialization:
- Configure the Flash prefetch
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init();
/* Configure the system clock to 72 MHz */
SystemClock_Config();
/* Configure LED1 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED_RED);
/* Configure Button Key */
BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_GPIO);
/* RTC Configuration -------------------------------------------------------*/
RTC_Config();
/* Wait Until KEY BUTTON is pressed */
while(BSP_PB_GetState(BUTTON_KEY) != RESET)
{
}
while(BSP_PB_GetState(BUTTON_KEY) != SET)
{
}
/* Get the LSI frequency: TIM5 is used to measure the LSI frequency */
uwLsiFreq = GetLSIFrequency();
/* Update the Calendar Configuration with the LSI exact value */
RtcHandle.Init.AsynchPrediv = (uwLsiFreq - 1);
if(HAL_RTC_Init(&RtcHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* Infinite loop */
while (1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 72000000
* HCLK(Hz) = 72000000
* AHB Prescaler = 1
* APB1 Prescaler = 2
* APB2 Prescaler = 1
* HSE Frequency(Hz) = 25000000
* HSE PREDIV1 = 5
* HSE PREDIV2 = 5
* PLL2MUL = 8
* Flash Latency(WS) = 2
* @param None
* @retval None
*/
void SystemClock_Config(void)
{
RCC_ClkInitTypeDef clkinitstruct = {0};
RCC_OscInitTypeDef oscinitstruct = {0};
/* Configure PLLs ------------------------------------------------------*/
/* PLL2 configuration: PLL2CLK = (HSE / HSEPrediv2Value) * PLL2MUL = (25 / 5) * 8 = 40 MHz */
/* PREDIV1 configuration: PREDIV1CLK = PLL2CLK / HSEPredivValue = 40 / 5 = 8 MHz */
/* PLL configuration: PLLCLK = PREDIV1CLK * PLLMUL = 8 * 9 = 72 MHz */
/* Enable HSE Oscillator and activate PLL with HSE as source */
oscinitstruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
oscinitstruct.HSEState = RCC_HSE_ON;
oscinitstruct.HSEPredivValue = RCC_HSE_PREDIV_DIV5;
oscinitstruct.Prediv1Source = RCC_PREDIV1_SOURCE_PLL2;
oscinitstruct.PLL.PLLState = RCC_PLL_ON;
oscinitstruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
oscinitstruct.PLL.PLLMUL = RCC_PLL_MUL9;
oscinitstruct.PLL2.PLL2State = RCC_PLL2_ON;
oscinitstruct.PLL2.PLL2MUL = RCC_PLL2_MUL8;
oscinitstruct.PLL2.HSEPrediv2Value = RCC_HSE_PREDIV2_DIV5;
if (HAL_RCC_OscConfig(&oscinitstruct)!= HAL_OK)
{
/* Initialization Error */
while(1);
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
clkinitstruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
clkinitstruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
clkinitstruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
clkinitstruct.APB2CLKDivider = RCC_HCLK_DIV1;
clkinitstruct.APB1CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&clkinitstruct, FLASH_LATENCY_2)!= HAL_OK)
{
/* Initialization Error */
while(1);
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
void Error_Handler(void)
{
/* Turn LED_RED on */
BSP_LED_On(LED_RED);
while (1)
{
}
}
/**
* @brief Configure the RTC peripheral by selecting the clock source.
* @param None
* @retval None
*/
static void RTC_Config(void)
{
/*##-1- Configure the RTC peripheral #######################################*/
/* Configure RTC prescaler and RTC data registers */
/* RTC configured as follow:
- Asynch Prediv = Calculated automatically by HAL (based on LSI at 40kHz) */
RtcHandle.Instance = RTC;
RtcHandle.Init.AsynchPrediv = RTC_AUTO_1_SECOND;
if(HAL_RTC_Init(&RtcHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/*##-2- Check if data stored in BackUp register1: Wakeup timer enable #######*/
/* Read the Back Up Register 1 Data */
if (HAL_RTCEx_BKUPRead(&RtcHandle, RTC_BKP_DR1) == WAKEUP_TIMER_ENABLE)
{
/* if the wakeup timer is enabled then desable it to disable the wakeup timer interrupt */
if(HAL_RTCEx_DeactivateSecond(&RtcHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
}
/*##-3- Configure the RTC Wakeup peripheral #################################*/
HAL_RTCEx_SetSecond_IT(&RtcHandle);
/*##-4- Write 'wakeup timer enabled' tag in RTC Backup data Register 1 #######*/
HAL_RTCEx_BKUPWrite(&RtcHandle, RTC_BKP_DR1, WAKEUP_TIMER_ENABLE);
}
/**
* @brief Configures TIM5 to measure the LSI oscillator frequency.
* @param None
* @retval LSI Frequency
*/
static uint32_t GetLSIFrequency(void)
{
TIM_IC_InitTypeDef TIMInput_Config;
/* Configure the TIM peripheral *********************************************/
/* Set TIMx instance */
Input_Handle.Instance = TIM5;
/* TIM5 configuration: Input Capture mode ---------------------
The LSI oscillator is connected to TIM5 TIM_CHANNEL_4.
The Rising edge is used as active edge.
The TIM5 CCR TIM_CHANNEL_4 is used to compute the frequency value.
------------------------------------------------------------ */
Input_Handle.Init.Prescaler = 0;
Input_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
Input_Handle.Init.Period = 0xFFFF;
Input_Handle.Init.ClockDivision = 0;
Input_Handle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if(HAL_TIM_IC_Init(&Input_Handle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* Connect internally the TIM5 TIM_CHANNEL_4 Input Capture to the LSI clock output */
__HAL_RCC_AFIO_CLK_ENABLE();
__HAL_AFIO_REMAP_TIM5CH4_ENABLE();
/* Configure the Input Capture of TIM_CHANNEL_4 */
TIMInput_Config.ICPolarity = TIM_ICPOLARITY_RISING;
TIMInput_Config.ICSelection = TIM_ICSELECTION_DIRECTTI;
TIMInput_Config.ICPrescaler = TIM_ICPSC_DIV8;
TIMInput_Config.ICFilter = 0;
if(HAL_TIM_IC_ConfigChannel(&Input_Handle, &TIMInput_Config, TIM_CHANNEL_4) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* Start the TIM Input Capture measurement in interrupt mode */
if(HAL_TIM_IC_Start_IT(&Input_Handle, TIM_CHANNEL_4) != HAL_OK)
{
Error_Handler();
}
/* Wait until the TIM5 get 2 LSI edges */
while(uwCaptureNumber != 2)
{
}
/* Disable TIM5 CC1 Interrupt Request */
HAL_TIM_IC_Stop_IT(&Input_Handle, TIM_CHANNEL_4);
/* Deinitialize the TIM5 peripheral registers to their default reset values */
HAL_TIM_IC_DeInit(&Input_Handle);
return uwLsiFreq;
}
/**
* @brief Input Capture callback in non blocking mode
* @param htim : TIM IC handle
* @retval None
*/
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
/* Get the Input Capture value */
tmpCCTIM_CHANNEL_4[uwCaptureNumber++] = HAL_TIM_ReadCapturedValue(&Input_Handle, TIM_CHANNEL_4);
if (uwCaptureNumber >= 2)
{
if ( tmpCCTIM_CHANNEL_4[0] > tmpCCTIM_CHANNEL_4[1] )
{
/* Compute the period length */
uwPeriodValue = (uint16_t)(0xFFFF - tmpCCTIM_CHANNEL_4[0] + tmpCCTIM_CHANNEL_4[1] + 1);
}
else
{
/* Compute the period length */
uwPeriodValue = (uint16_t)(tmpCCTIM_CHANNEL_4[1] - tmpCCTIM_CHANNEL_4[0] + 1);
}
/* Frequency computation */
uwLsiFreq = (uint32_t) SystemCoreClock / uwPeriodValue;
uwLsiFreq *= 8;
}
}
/**
* @brief RTC wakeup timer callback
* @param htim : TIM IC handle
* @retval None
*/
void HAL_RTCEx_RTCEventCallback(RTC_HandleTypeDef *hrtc)
{
/* Toggle LED1 */
BSP_LED_Toggle(LED1);
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @}
*/
/**
* @}
*/