STM32CubeF1/Drivers/BSP/STM32F1xx_Nucleo/stm32f1xx_nucleo.c

874 lines
24 KiB
C

/**
******************************************************************************
* @file stm32f1xx_nucleo.c
* @author MCD Application Team
* @version V1.0.4
* @date 14-April-2017
* @brief This file provides set of firmware functions to manage:
* - LEDs and push-button available on STM32F1XX-Nucleo Kit
* from STMicroelectronics
* - LCD, joystick and microSD available on Adafruit 1.8" TFT LCD
* shield (reference ID 802)
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_nucleo.h"
/** @addtogroup BSP
* @{
*/
/** @defgroup STM32F1XX_NUCLEO STM32F103RB Nucleo
* @brief This file provides set of firmware functions to manage Leds and push-button
* available on STM32F1XX-Nucleo Kit from STMicroelectronics.
* It provides also LCD, joystick and uSD functions to communicate with
* Adafruit 1.8" TFT LCD shield (reference ID 802)
* @{
*/
/** @defgroup STM32F1XX_NUCLEO_Private_Defines STM32F1XX NUCLEO Private Defines
* @{
*/
/**
* @brief STM32F103RB NUCLEO BSP Driver version
*/
#define __STM32F1XX_NUCLEO_BSP_VERSION_MAIN (0x01) /*!< [31:24] main version */
#define __STM32F1XX_NUCLEO_BSP_VERSION_SUB1 (0x00) /*!< [23:16] sub1 version */
#define __STM32F1XX_NUCLEO_BSP_VERSION_SUB2 (0x05) /*!< [15:8] sub2 version */
#define __STM32F1XX_NUCLEO_BSP_VERSION_RC (0x00) /*!< [7:0] release candidate */
#define __STM32F1XX_NUCLEO_BSP_VERSION ((__STM32F1XX_NUCLEO_BSP_VERSION_MAIN << 24)\
|(__STM32F1XX_NUCLEO_BSP_VERSION_SUB1 << 16)\
|(__STM32F1XX_NUCLEO_BSP_VERSION_SUB2 << 8 )\
|(__STM32F1XX_NUCLEO_BSP_VERSION_RC))
/**
* @brief LINK SD Card
*/
#define SD_DUMMY_BYTE 0xFF
#define SD_NO_RESPONSE_EXPECTED 0x80
/**
* @}
*/
/** @defgroup STM32F1XX_NUCLEO_Private_Variables STM32F1XX NUCLEO Private Variables
* @{
*/
GPIO_TypeDef* LED_PORT[LEDn] = {LED2_GPIO_PORT};
const uint16_t LED_PIN[LEDn] = {LED2_PIN};
GPIO_TypeDef* BUTTON_PORT[BUTTONn] = {USER_BUTTON_GPIO_PORT};
const uint16_t BUTTON_PIN[BUTTONn] = {USER_BUTTON_PIN};
const uint8_t BUTTON_IRQn[BUTTONn] = {USER_BUTTON_EXTI_IRQn };
/**
* @brief BUS variables
*/
#ifdef HAL_SPI_MODULE_ENABLED
uint32_t SpixTimeout = NUCLEO_SPIx_TIMEOUT_MAX; /*<! Value of Timeout when SPI communication fails */
static SPI_HandleTypeDef hnucleo_Spi;
#endif /* HAL_SPI_MODULE_ENABLED */
#ifdef HAL_ADC_MODULE_ENABLED
static ADC_HandleTypeDef hnucleo_Adc;
/* ADC channel configuration structure declaration */
static ADC_ChannelConfTypeDef sConfig;
#endif /* HAL_ADC_MODULE_ENABLED */
/**
* @}
*/
/** @defgroup STM32F1XX_NUCLEO_Private_Functions STM32F1XX NUCLEO Private Functions
* @{
*/
#ifdef HAL_SPI_MODULE_ENABLED
static void SPIx_Init(void);
static void SPIx_Write(uint8_t Value);
static void SPIx_WriteData(uint8_t *DataIn, uint16_t DataLength);
static void SPIx_WriteReadData(const uint8_t *DataIn, uint8_t *DataOut, uint16_t DataLegnth);
static void SPIx_Error (void);
static void SPIx_MspInit(void);
/* SD IO functions */
void SD_IO_Init(void);
void SD_IO_CSState(uint8_t state);
void SD_IO_WriteReadData(const uint8_t *DataIn, uint8_t *DataOut, uint16_t DataLength);
void SD_IO_ReadData(uint8_t *DataOut, uint16_t DataLength);
void SD_IO_WriteData(const uint8_t *Data, uint16_t DataLength);
uint8_t SD_IO_WriteByte(uint8_t Data);
uint8_t SD_IO_ReadByte(void);
/* LCD IO functions */
void LCD_IO_Init(void);
void LCD_IO_WriteData(uint8_t Data);
void LCD_IO_WriteMultipleData(uint8_t *pData, uint32_t Size);
void LCD_IO_WriteReg(uint8_t LCDReg);
void LCD_Delay(uint32_t delay);
#endif /* HAL_SPI_MODULE_ENABLED */
#ifdef HAL_ADC_MODULE_ENABLED
static HAL_StatusTypeDef ADCx_Init(void);
static void ADCx_DeInit(void);
static void ADCx_MspInit(ADC_HandleTypeDef *hadc);
static void ADCx_MspDeInit(ADC_HandleTypeDef *hadc);
#endif /* HAL_ADC_MODULE_ENABLED */
/**
* @}
*/
/** @defgroup STM32F1XX_NUCLEO_Exported_Functions STM32F1XX NUCLEO Exported Functions
* @{
*/
/**
* @brief This method returns the STM32F1XX NUCLEO BSP Driver revision
* @retval version : 0xXYZR (8bits for each decimal, R for RC)
*/
uint32_t BSP_GetVersion(void)
{
return __STM32F1XX_NUCLEO_BSP_VERSION;
}
/** @defgroup STM32F1XX_NUCLEO_LED_Functions STM32F1XX NUCLEO LED Functions
* @{
*/
/**
* @brief Configures LED GPIO.
* @param Led: Led to be configured.
* This parameter can be one of the following values:
* @arg LED2
*/
void BSP_LED_Init(Led_TypeDef Led)
{
GPIO_InitTypeDef gpioinitstruct;
/* Enable the GPIO_LED Clock */
LEDx_GPIO_CLK_ENABLE(Led);
/* Configure the GPIO_LED pin */
gpioinitstruct.Pin = LED_PIN[Led];
gpioinitstruct.Mode = GPIO_MODE_OUTPUT_PP;
gpioinitstruct.Pull = GPIO_NOPULL;
gpioinitstruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(LED_PORT[Led], &gpioinitstruct);
/* Reset PIN to switch off the LED */
HAL_GPIO_WritePin(LED_PORT[Led],LED_PIN[Led], GPIO_PIN_RESET);
}
/**
* @brief DeInit LEDs.
* @param Led: LED to be de-init.
* This parameter can be one of the following values:
* @arg LED2
* @note Led DeInit does not disable the GPIO clock nor disable the Mfx
*/
void BSP_LED_DeInit(Led_TypeDef Led)
{
GPIO_InitTypeDef gpio_init_structure;
/* Turn off LED */
HAL_GPIO_WritePin(LED_PORT[Led],LED_PIN[Led], GPIO_PIN_RESET);
/* DeInit the GPIO_LED pin */
gpio_init_structure.Pin = LED_PIN[Led];
HAL_GPIO_DeInit(LED_PORT[Led], gpio_init_structure.Pin);
}
/**
* @brief Turns selected LED On.
* @param Led: Specifies the Led to be set on.
* This parameter can be one of following parameters:
* @arg LED2
*/
void BSP_LED_On(Led_TypeDef Led)
{
HAL_GPIO_WritePin(LED_PORT[Led], LED_PIN[Led], GPIO_PIN_SET);
}
/**
* @brief Turns selected LED Off.
* @param Led: Specifies the Led to be set off.
* This parameter can be one of following parameters:
* @arg LED2
*/
void BSP_LED_Off(Led_TypeDef Led)
{
HAL_GPIO_WritePin(LED_PORT[Led], LED_PIN[Led], GPIO_PIN_RESET);
}
/**
* @brief Toggles the selected LED.
* @param Led: Specifies the Led to be toggled.
* This parameter can be one of following parameters:
* @arg LED2
*/
void BSP_LED_Toggle(Led_TypeDef Led)
{
HAL_GPIO_TogglePin(LED_PORT[Led], LED_PIN[Led]);
}
/**
* @}
*/
/** @defgroup STM32F1XX_NUCLEO_BUTTON_Functions STM32F1XX NUCLEO BUTTON Functions
* @{
*/
/**
* @brief Configures Button GPIO and EXTI Line.
* @param Button: Specifies the Button to be configured.
* This parameter should be: BUTTON_USER
* @param ButtonMode: Specifies Button mode.
* This parameter can be one of following parameters:
* @arg BUTTON_MODE_GPIO: Button will be used as simple IO
* @arg BUTTON_MODE_EXTI: Button will be connected to EXTI line with interrupt
* generation capability
*/
void BSP_PB_Init(Button_TypeDef Button, ButtonMode_TypeDef ButtonMode)
{
GPIO_InitTypeDef gpioinitstruct;
/* Enable the BUTTON Clock */
BUTTONx_GPIO_CLK_ENABLE(Button);
gpioinitstruct.Pin = BUTTON_PIN[Button];
gpioinitstruct.Pull = GPIO_NOPULL;
gpioinitstruct.Speed = GPIO_SPEED_FREQ_MEDIUM;
if (ButtonMode == BUTTON_MODE_GPIO)
{
/* Configure Button pin as input */
gpioinitstruct.Mode = GPIO_MODE_INPUT;
HAL_GPIO_Init(BUTTON_PORT[Button], &gpioinitstruct);
}
if (ButtonMode == BUTTON_MODE_EXTI)
{
/* Configure Button pin as input with External interrupt */
gpioinitstruct.Mode = GPIO_MODE_IT_FALLING;
HAL_GPIO_Init(BUTTON_PORT[Button], &gpioinitstruct);
/* Enable and set Button EXTI Interrupt to the lowest priority */
HAL_NVIC_SetPriority((IRQn_Type)(BUTTON_IRQn[Button]), 0x0F, 0);
HAL_NVIC_EnableIRQ((IRQn_Type)(BUTTON_IRQn[Button]));
}
}
/**
* @brief Push Button DeInit.
* @param Button: Button to be configured
* This parameter should be: BUTTON_USER
* @note PB DeInit does not disable the GPIO clock
*/
void BSP_PB_DeInit(Button_TypeDef Button)
{
GPIO_InitTypeDef gpio_init_structure;
gpio_init_structure.Pin = BUTTON_PIN[Button];
HAL_NVIC_DisableIRQ((IRQn_Type)(BUTTON_IRQn[Button]));
HAL_GPIO_DeInit(BUTTON_PORT[Button], gpio_init_structure.Pin);
}
/**
* @brief Returns the selected Button state.
* @param Button: Specifies the Button to be checked.
* This parameter should be: BUTTON_USER
* @retval Button state.
*/
uint32_t BSP_PB_GetState(Button_TypeDef Button)
{
return HAL_GPIO_ReadPin(BUTTON_PORT[Button], BUTTON_PIN[Button]);
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup STM32F1XX_NUCLEO_Private_Functions
* @{
*/
#ifdef HAL_SPI_MODULE_ENABLED
/******************************************************************************
BUS OPERATIONS
*******************************************************************************/
/**
* @brief Initialize SPI MSP.
*/
static void SPIx_MspInit(void)
{
GPIO_InitTypeDef gpioinitstruct = {0};
/*** Configure the GPIOs ***/
/* Enable GPIO clock */
NUCLEO_SPIx_SCK_GPIO_CLK_ENABLE();
NUCLEO_SPIx_MISO_MOSI_GPIO_CLK_ENABLE();
/* Configure SPI SCK */
gpioinitstruct.Pin = NUCLEO_SPIx_SCK_PIN;
gpioinitstruct.Mode = GPIO_MODE_AF_PP;
gpioinitstruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(NUCLEO_SPIx_SCK_GPIO_PORT, &gpioinitstruct);
/* Configure SPI MISO and MOSI */
gpioinitstruct.Pin = NUCLEO_SPIx_MOSI_PIN;
HAL_GPIO_Init(NUCLEO_SPIx_MISO_MOSI_GPIO_PORT, &gpioinitstruct);
gpioinitstruct.Pin = NUCLEO_SPIx_MISO_PIN;
gpioinitstruct.Mode = GPIO_MODE_INPUT;
HAL_GPIO_Init(NUCLEO_SPIx_MISO_MOSI_GPIO_PORT, &gpioinitstruct);
/*** Configure the SPI peripheral ***/
/* Enable SPI clock */
NUCLEO_SPIx_CLK_ENABLE();
}
/**
* @brief Initialize SPI HAL.
*/
static void SPIx_Init(void)
{
if(HAL_SPI_GetState(&hnucleo_Spi) == HAL_SPI_STATE_RESET)
{
/* SPI Config */
hnucleo_Spi.Instance = NUCLEO_SPIx;
/* SPI baudrate is set to 8 MHz maximum (PCLK2/SPI_BaudRatePrescaler = 64/8 = 8 MHz)
to verify these constraints:
- ST7735 LCD SPI interface max baudrate is 15MHz for write and 6.66MHz for read
Since the provided driver doesn't use read capability from LCD, only constraint
on write baudrate is considered.
- SD card SPI interface max baudrate is 25MHz for write/read
- PCLK2 max frequency is 32 MHz
*/
hnucleo_Spi.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
hnucleo_Spi.Init.Direction = SPI_DIRECTION_2LINES;
hnucleo_Spi.Init.CLKPhase = SPI_PHASE_1EDGE;
hnucleo_Spi.Init.CLKPolarity = SPI_POLARITY_LOW;
hnucleo_Spi.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hnucleo_Spi.Init.CRCPolynomial = 7;
hnucleo_Spi.Init.DataSize = SPI_DATASIZE_8BIT;
hnucleo_Spi.Init.FirstBit = SPI_FIRSTBIT_MSB;
hnucleo_Spi.Init.NSS = SPI_NSS_SOFT;
hnucleo_Spi.Init.TIMode = SPI_TIMODE_DISABLE;
hnucleo_Spi.Init.Mode = SPI_MODE_MASTER;
SPIx_MspInit();
HAL_SPI_Init(&hnucleo_Spi);
}
}
/**
* @brief SPI Write a byte to device
* @param Value: value to be written
*/
static void SPIx_WriteReadData(const uint8_t *DataIn, uint8_t *DataOut, uint16_t DataLength)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_SPI_TransmitReceive(&hnucleo_Spi, (uint8_t*) DataIn, DataOut, DataLength, SpixTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
SPIx_Error();
}
}
/**
* @brief SPI Write an amount of data to device
* @param Value: value to be written
* @param DataLength: number of bytes to write
*/
static void SPIx_WriteData(uint8_t *DataIn, uint16_t DataLength)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_SPI_Transmit(&hnucleo_Spi, DataIn, DataLength, SpixTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
SPIx_Error();
}
}
/**
* @brief SPI Write a byte to device
* @param Value: value to be written
*/
static void SPIx_Write(uint8_t Value)
{
HAL_StatusTypeDef status = HAL_OK;
uint8_t data;
status = HAL_SPI_TransmitReceive(&hnucleo_Spi, (uint8_t*) &Value, &data, 1, SpixTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
SPIx_Error();
}
}
/**
* @brief SPI error treatment function
*/
static void SPIx_Error (void)
{
/* De-initialize the SPI communication BUS */
HAL_SPI_DeInit(&hnucleo_Spi);
/* Re-Initiaize the SPI communication BUS */
SPIx_Init();
}
/******************************************************************************
LINK OPERATIONS
*******************************************************************************/
/********************************* LINK SD ************************************/
/**
* @brief Initialize the SD Card and put it into StandBy State (Ready for
* data transfer).
*/
void SD_IO_Init(void)
{
GPIO_InitTypeDef gpioinitstruct = {0};
uint8_t counter = 0;
/* SD_CS_GPIO Periph clock enable */
SD_CS_GPIO_CLK_ENABLE();
/* Configure SD_CS_PIN pin: SD Card CS pin */
gpioinitstruct.Pin = SD_CS_PIN;
gpioinitstruct.Mode = GPIO_MODE_OUTPUT_PP;
gpioinitstruct.Pull = GPIO_PULLUP;
gpioinitstruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(SD_CS_GPIO_PORT, &gpioinitstruct);
/* Configure LCD_CS_PIN pin: LCD Card CS pin */
gpioinitstruct.Pin = LCD_CS_PIN;
gpioinitstruct.Mode = GPIO_MODE_OUTPUT_PP;
gpioinitstruct.Pull = GPIO_NOPULL;
gpioinitstruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(SD_CS_GPIO_PORT, &gpioinitstruct);
LCD_CS_HIGH();
/*------------Put SD in SPI mode--------------*/
/* SD SPI Config */
SPIx_Init();
/* SD chip select high */
SD_CS_HIGH();
/* Send dummy byte 0xFF, 10 times with CS high */
/* Rise CS and MOSI for 80 clocks cycles */
for (counter = 0; counter <= 9; counter++)
{
/* Send dummy byte 0xFF */
SD_IO_WriteByte(SD_DUMMY_BYTE);
}
}
/**
* @brief Set the SD_CS pin.
* @param pin value.
*/
void SD_IO_CSState(uint8_t val)
{
if(val == 1)
{
SD_CS_HIGH();
}
else
{
SD_CS_LOW();
}
}
/**
* @brief Write byte(s) on the SD
* @param DataIn: Pointer to data buffer to write
* @param DataOut: Pointer to data buffer for read data
* @param DataLength: number of bytes to write
*/
void SD_IO_WriteReadData(const uint8_t *DataIn, uint8_t *DataOut, uint16_t DataLength)
{
/* Send the byte */
SPIx_WriteReadData(DataIn, DataOut, DataLength);
}
/**
* @brief Write a byte on the SD.
* @param Data: byte to send.
* @retval Data written
*/
uint8_t SD_IO_WriteByte(uint8_t Data)
{
uint8_t tmp;
/* Send the byte */
SPIx_WriteReadData(&Data,&tmp,1);
return tmp;
}
/**
* @brief Write an amount of data on the SD.
* @param Data: byte to send.
* @param DataLength: number of bytes to write
*/
void SD_IO_ReadData(uint8_t *DataOut, uint16_t DataLength)
{
/* Send the byte */
SD_IO_WriteReadData(DataOut, DataOut, DataLength);
}
/**
* @brief Write an amount of data on the SD.
* @param Data: byte to send.
* @param DataLength: number of bytes to write
*/
void SD_IO_WriteData(const uint8_t *Data, uint16_t DataLength)
{
/* Send the byte */
SPIx_WriteData((uint8_t *)Data, DataLength);
}
/********************************* LINK LCD ***********************************/
/**
* @brief Initialize the LCD
*/
void LCD_IO_Init(void)
{
GPIO_InitTypeDef gpioinitstruct;
/* LCD_CS_GPIO and LCD_DC_GPIO Periph clock enable */
LCD_CS_GPIO_CLK_ENABLE();
LCD_DC_GPIO_CLK_ENABLE();
/* Configure LCD_CS_PIN pin: LCD Card CS pin */
gpioinitstruct.Pin = LCD_CS_PIN;
gpioinitstruct.Mode = GPIO_MODE_OUTPUT_PP;
gpioinitstruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(SD_CS_GPIO_PORT, &gpioinitstruct);
/* Configure LCD_DC_PIN pin: LCD Card DC pin */
gpioinitstruct.Pin = LCD_DC_PIN;
HAL_GPIO_Init(LCD_DC_GPIO_PORT, &gpioinitstruct);
/* LCD chip select high */
LCD_CS_HIGH();
/* LCD SPI Config */
SPIx_Init();
}
/**
* @brief Write command to select the LCD register.
* @param LCDReg: Address of the selected register.
* @retval None
*/
void LCD_IO_WriteReg(uint8_t LCDReg)
{
/* Reset LCD control line CS */
LCD_CS_LOW();
/* Set LCD data/command line DC to Low */
LCD_DC_LOW();
/* Send Command */
SPIx_Write(LCDReg);
/* Deselect : Chip Select high */
LCD_CS_HIGH();
}
/**
* @brief Write register value.
* @param pData Pointer on the register value
* @param Size Size of byte to transmit to the register
*/
void LCD_IO_WriteMultipleData(uint8_t *pData, uint32_t Size)
{
uint32_t counter = 0;
/* Reset LCD control line CS */
LCD_CS_LOW();
/* Set LCD data/command line DC to High */
LCD_DC_HIGH();
if (Size == 1)
{
/* Only 1 byte to be sent to LCD - general interface can be used */
/* Send Data */
SPIx_Write(*pData);
}
else
{
/* Several data should be sent in a raw */
/* Direct SPI accesses for optimization */
for (counter = Size; counter != 0; counter--)
{
while(((hnucleo_Spi.Instance->SR) & SPI_FLAG_TXE) != SPI_FLAG_TXE)
{
}
/* Need to invert bytes for LCD*/
*((__IO uint8_t*)&hnucleo_Spi.Instance->DR) = *(pData+1);
while(((hnucleo_Spi.Instance->SR) & SPI_FLAG_TXE) != SPI_FLAG_TXE)
{
}
*((__IO uint8_t*)&hnucleo_Spi.Instance->DR) = *pData;
counter--;
pData += 2;
}
/* Wait until the bus is ready before releasing Chip select */
while(((hnucleo_Spi.Instance->SR) & SPI_FLAG_BSY) != RESET)
{
}
}
/* Deselect : Chip Select high */
LCD_CS_HIGH();
}
/**
* @brief Wait for loop in ms.
* @param Delay in ms.
* @retval None
*/
void LCD_Delay(uint32_t Delay)
{
HAL_Delay(Delay);
}
#endif /* HAL_SPI_MODULE_ENABLED */
#ifdef HAL_ADC_MODULE_ENABLED
/******************************* LINK JOYSTICK ********************************/
/**
* @brief Initialize ADC MSP.
*/
static void ADCx_MspInit(ADC_HandleTypeDef *hadc)
{
GPIO_InitTypeDef gpioinitstruct;
/*** Configure the GPIOs ***/
/* Enable GPIO clock */
NUCLEO_ADCx_GPIO_CLK_ENABLE();
/* Configure ADC1 Channel8 as analog input */
gpioinitstruct.Pin = NUCLEO_ADCx_GPIO_PIN ;
gpioinitstruct.Mode = GPIO_MODE_ANALOG;
gpioinitstruct.Pull = GPIO_NOPULL;
gpioinitstruct.Speed = GPIO_SPEED_FREQ_MEDIUM;
HAL_GPIO_Init(NUCLEO_ADCx_GPIO_PORT, &gpioinitstruct);
/*** Configure the ADC peripheral ***/
/* Enable ADC clock */
NUCLEO_ADCx_CLK_ENABLE();
}
/**
* @brief DeInitializes ADC MSP.
* @note ADC DeInit does not disable the GPIO clock
*/
static void ADCx_MspDeInit(ADC_HandleTypeDef *hadc)
{
GPIO_InitTypeDef gpioinitstruct;
/*** DeInit the ADC peripheral ***/
/* Disable ADC clock */
NUCLEO_ADCx_CLK_DISABLE();
/* Configure the selected ADC Channel as analog input */
gpioinitstruct.Pin = NUCLEO_ADCx_GPIO_PIN ;
HAL_GPIO_DeInit(NUCLEO_ADCx_GPIO_PORT, gpioinitstruct.Pin);
/* Disable GPIO clock has to be done by the application*/
/* NUCLEO_ADCx_GPIO_CLK_DISABLE(); */
}
/**
* @brief Initializes ADC HAL.
*/
static HAL_StatusTypeDef ADCx_Init(void)
{
/* Set ADC instance */
hnucleo_Adc.Instance = NUCLEO_ADCx;
if(HAL_ADC_GetState(&hnucleo_Adc) == HAL_ADC_STATE_RESET)
{
/* ADC Config */
hnucleo_Adc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hnucleo_Adc.Init.ScanConvMode = ADC_SCAN_DISABLE;
hnucleo_Adc.Init.ContinuousConvMode = DISABLE;
hnucleo_Adc.Init.NbrOfConversion = 1;
hnucleo_Adc.Init.DiscontinuousConvMode = DISABLE;
hnucleo_Adc.Init.NbrOfDiscConversion = 1;
hnucleo_Adc.Init.ExternalTrigConv = ADC_SOFTWARE_START;
/* Initialize MSP related to ADC */
ADCx_MspInit(&hnucleo_Adc);
/* Initialize ADC */
if (HAL_ADC_Init(&hnucleo_Adc) != HAL_OK)
{
return HAL_ERROR;
}
/* Run ADC calibration */
if (HAL_ADCEx_Calibration_Start(&hnucleo_Adc) != HAL_OK)
{
return HAL_ERROR;
}
}
return HAL_OK;
}
/**
* @brief Initializes ADC HAL.
*/
static void ADCx_DeInit(void)
{
hnucleo_Adc.Instance = NUCLEO_ADCx;
HAL_ADC_DeInit(&hnucleo_Adc);
ADCx_MspDeInit(&hnucleo_Adc);
}
/******************************* LINK JOYSTICK ********************************/
/**
* @brief Configures joystick available on adafruit 1.8" TFT shield
* managed through ADC to detect motion.
* @retval Joystickstatus (0=> success, 1=> fail)
*/
uint8_t BSP_JOY_Init(void)
{
if (ADCx_Init() != HAL_OK)
{
return (uint8_t) HAL_ERROR;
}
/* Select Channel 8 to be converted */
sConfig.Channel = ADC_CHANNEL_8;
sConfig.SamplingTime = ADC_SAMPLETIME_71CYCLES_5;
sConfig.Rank = 1;
/* Return Joystick initialization status */
return (uint8_t)HAL_ADC_ConfigChannel(&hnucleo_Adc, &sConfig);
}
/**
* @brief DeInit joystick GPIOs.
* @note JOY DeInit does not disable the Mfx, just set the Mfx pins in Off mode
*/
void BSP_JOY_DeInit(void)
{
ADCx_DeInit();
}
/**
* @brief Returns the Joystick key pressed.
* @note To know which Joystick key is pressed we need to detect the voltage
* level on each key output
* - None : 3.3 V / 4095
* - SEL : 1.055 V / 1308
* - DOWN : 0.71 V / 88
* - LEFT : 3.0 V / 3720
* - RIGHT : 0.595 V / 737
* - UP : 1.65 V / 2046
* @retval JOYState_TypeDef: Code of the Joystick key pressed.
*/
JOYState_TypeDef BSP_JOY_GetState(void)
{
JOYState_TypeDef state = JOY_NONE;
uint16_t keyconvertedvalue = 0;
/* Start the conversion process */
HAL_ADC_Start(&hnucleo_Adc);
/* Wait for the end of conversion */
if (HAL_ADC_PollForConversion(&hnucleo_Adc, 10) != HAL_TIMEOUT)
{
/* Get the converted value of regular channel */
keyconvertedvalue = HAL_ADC_GetValue(&hnucleo_Adc);
}
if((keyconvertedvalue > 1800) && (keyconvertedvalue < 2090))
{
state = JOY_UP;
}
else if((keyconvertedvalue > 500) && (keyconvertedvalue < 780))
{
state = JOY_RIGHT;
}
else if((keyconvertedvalue > 1200) && (keyconvertedvalue < 1350))
{
state = JOY_SEL;
}
else if((keyconvertedvalue > 10) && (keyconvertedvalue < 130))
{
state = JOY_DOWN;
}
else if((keyconvertedvalue > 3500) && (keyconvertedvalue < 3760))
{
state = JOY_LEFT;
}
else
{
state = JOY_NONE;
}
/* Return the code of the Joystick key pressed*/
return state;
}
#endif /* HAL_ADC_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/