STM32CubeF1/Drivers/BSP/STM3210C_EVAL/stm3210c_eval.c

1449 lines
41 KiB
C

/**
******************************************************************************
* @file stm3210c_eval.c
* @author MCD Application Team
* @version V6.1.0
* @date 14-April-2017
* @brief This file provides a set of firmware functions to manage Leds,
* push-button and COM ports for STM3210C_EVAL
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm3210c_eval.h"
/** @addtogroup BSP
* @{
*/
/** @defgroup STM3210C_EVAL STM3210C EVAL
* @{
*/
/** @defgroup STM3210C_EVAL_COMMON STM3210C EVAL Common
* @{
*/
/** @defgroup STM3210C_EVAL_Private_TypesDefinitions STM3210C EVAL Private TypesDefinitions
* @{
*/
typedef struct
{
__IO uint16_t LCD_REG_R; /* Read Register */
__IO uint16_t LCD_RAM_R; /* Read RAM */
__IO uint16_t LCD_REG_W; /* Write Register */
__IO uint16_t LCD_RAM_W; /* Write RAM */
} TFT_LCD_TypeDef;
/**
* @}
*/
/** @defgroup STM3210C_EVAL_Private_Defines STM3210C EVAL Private Defines
* @{
*/
/* LINK LCD */
#define START_BYTE 0x70
#define SET_INDEX 0x00
#define READ_STATUS 0x01
#define LCD_WRITE_REG 0x02
#define LCD_READ_REG 0x03
/* LINK SD Card */
#define SD_DUMMY_BYTE 0xFF
#define SD_NO_RESPONSE_EXPECTED 0x80
/**
* @brief STM3210C EVAL BSP Driver version number
*/
#define __STM3210C_EVAL_BSP_VERSION_MAIN (0x06) /*!< [31:24] main version */
#define __STM3210C_EVAL_BSP_VERSION_SUB1 (0x01) /*!< [23:16] sub1 version */
#define __STM3210C_EVAL_BSP_VERSION_SUB2 (0x01) /*!< [15:8] sub2 version */
#define __STM3210C_EVAL_BSP_VERSION_RC (0x00) /*!< [7:0] release candidate */
#define __STM3210C_EVAL_BSP_VERSION ((__STM3210C_EVAL_BSP_VERSION_MAIN << 24)\
|(__STM3210C_EVAL_BSP_VERSION_SUB1 << 16)\
|(__STM3210C_EVAL_BSP_VERSION_SUB2 << 8 )\
|(__STM3210C_EVAL_BSP_VERSION_RC))
/* Note: LCD /CS is CE4 - Bank 4 of NOR/SRAM Bank 1~4 */
#define TFT_LCD_BASE ((uint32_t)(0x60000000 | 0x0C000000))
#define TFT_LCD ((TFT_LCD_TypeDef *) TFT_LCD_BASE)
/**
* @}
*/
/** @defgroup STM3210C_EVAL_Private_Variables STM3210C EVAL Private Variables
* @{
*/
/**
* @brief LED variables
*/
GPIO_TypeDef* LED_PORT[LEDn] = {LED1_GPIO_PORT,
LED2_GPIO_PORT,
LED3_GPIO_PORT,
LED4_GPIO_PORT};
const uint16_t LED_PIN[LEDn] = {LED1_PIN,
LED2_PIN,
LED3_PIN,
LED4_PIN};
/**
* @brief BUTTON variables
*/
GPIO_TypeDef* BUTTON_PORT[BUTTONn] = {WAKEUP_BUTTON_GPIO_PORT,
TAMPER_BUTTON_GPIO_PORT,
KEY_BUTTON_GPIO_PORT};
const uint16_t BUTTON_PIN[BUTTONn] = {WAKEUP_BUTTON_PIN,
TAMPER_BUTTON_PIN,
KEY_BUTTON_PIN};
const uint16_t BUTTON_IRQn[BUTTONn] = {WAKEUP_BUTTON_EXTI_IRQn,
TAMPER_BUTTON_EXTI_IRQn,
KEY_BUTTON_EXTI_IRQn};
/**
* @brief COM variables
*/
USART_TypeDef* COM_USART[COMn] = {EVAL_COM1};
GPIO_TypeDef* COM_TX_PORT[COMn] = {EVAL_COM1_TX_GPIO_PORT};
GPIO_TypeDef* COM_RX_PORT[COMn] = {EVAL_COM1_RX_GPIO_PORT};
const uint16_t COM_TX_PIN[COMn] = {EVAL_COM1_TX_PIN};
const uint16_t COM_RX_PIN[COMn] = {EVAL_COM1_RX_PIN};
/**
* @brief BUS variables
*/
#ifdef HAL_SPI_MODULE_ENABLED
uint32_t SpixTimeout = EVAL_SPIx_TIMEOUT_MAX; /*<! Value of Timeout when SPI communication fails */
static SPI_HandleTypeDef heval_Spi;
#endif /* HAL_SPI_MODULE_ENABLED */
#ifdef HAL_I2C_MODULE_ENABLED
uint32_t I2cxTimeout = EVAL_I2Cx_TIMEOUT_MAX; /*<! Value of Timeout when I2C communication fails */
I2C_HandleTypeDef heval_I2c;
#endif /* HAL_I2C_MODULE_ENABLED */
/**
* @}
*/
/* I2Cx bus function */
#ifdef HAL_I2C_MODULE_ENABLED
/* Link function for I2C EEPROM peripheral */
static void I2Cx_Init(void);
static void I2Cx_ITConfig(void);
static HAL_StatusTypeDef I2Cx_ReadMultiple(uint8_t Addr, uint16_t Reg, uint16_t MemAddress, uint8_t *Buffer, uint16_t Length);
static HAL_StatusTypeDef I2Cx_ReadBuffer(uint16_t Addr, uint8_t Reg, uint16_t RegSize, uint8_t *pBuffer, uint16_t Length);
static void I2Cx_WriteData(uint16_t Addr, uint8_t Reg, uint8_t Value);
static HAL_StatusTypeDef I2Cx_WriteBuffer(uint16_t Addr, uint8_t Reg, uint16_t RegSize, uint8_t *pBuffer, uint16_t Length);
static uint8_t I2Cx_ReadData(uint16_t Addr, uint8_t Reg);
static HAL_StatusTypeDef I2Cx_IsDeviceReady(uint16_t DevAddress, uint32_t Trials);
static void I2Cx_Error(uint8_t Addr);
static void I2Cx_MspInit(I2C_HandleTypeDef *hi2c);
/* Link function for IO Expander over I2C */
void IOE_Init(void);
void IOE_ITConfig(void);
void IOE_Delay(uint32_t Delay);
void IOE_Write(uint8_t Addr, uint8_t Reg, uint8_t Value);
uint8_t IOE_Read(uint8_t Addr, uint8_t Reg);
uint16_t IOE_ReadMultiple(uint8_t Addr, uint8_t Reg, uint8_t *Buffer, uint16_t Length);
/* Link function for EEPROM peripheral over I2C */
void EEPROM_I2C_IO_Init(void);
HAL_StatusTypeDef EEPROM_I2C_IO_WriteData(uint16_t DevAddress, uint16_t MemAddress, uint8_t* pBuffer, uint32_t BufferSize);
HAL_StatusTypeDef EEPROM_I2C_IO_ReadData(uint16_t DevAddress, uint16_t MemAddress, uint8_t* pBuffer, uint32_t BufferSize);
HAL_StatusTypeDef EEPROM_I2C_IO_IsDeviceReady(uint16_t DevAddress, uint32_t Trials);
/* Link functions for Temperature Sensor peripheral */
void TSENSOR_IO_Init(void);
void TSENSOR_IO_Write(uint16_t DevAddress, uint8_t* pBuffer, uint8_t WriteAddr, uint16_t Length);
void TSENSOR_IO_Read(uint16_t DevAddress, uint8_t* pBuffer, uint8_t ReadAddr, uint16_t Length);
uint16_t TSENSOR_IO_IsDeviceReady(uint16_t DevAddress, uint32_t Trials);
/* Link function for Audio peripheral */
void AUDIO_IO_Init(void);
void AUDIO_IO_DeInit(void);
void AUDIO_IO_Write(uint8_t Addr, uint8_t Reg, uint8_t Value);
uint8_t AUDIO_IO_Read(uint8_t Addr, uint8_t Reg);
/* Link function for Accelero peripheral */
void ACCELERO_IO_Init(void);
void ACCELERO_IO_ITConfig(void);
void ACCELERO_IO_Write(uint8_t* pBuffer, uint8_t WriteAddr, uint16_t NumByteToWrite);
void ACCELERO_IO_Read(uint8_t* pBuffer, uint8_t ReadAddr, uint16_t NumByteToRead);
#endif /* HAL_I2C_MODULE_ENABLED */
/* SPIx bus function */
#ifdef HAL_SPI_MODULE_ENABLED
static void SPIx_Init(void);
static void SPIx_Write(uint8_t Value);
static uint32_t SPIx_Read(void);
static void SPIx_WriteReadData(const uint8_t *DataIn, uint8_t *DataOut, uint16_t DataLength);
static void SPIx_WriteData(const uint8_t *Data, uint16_t DataLength);
static void SPIx_ReadData(const uint8_t *Data, uint16_t DataLength);
static void SPIx_Error(void);
static void SPIx_MspInit(void);
/* Link function for LCD peripheral over SPI */
void LCD_IO_Init(void);
void LCD_IO_WriteMultipleData(uint8_t *pData, uint32_t Size);
void LCD_IO_WriteReg(uint8_t Reg);
uint16_t LCD_IO_ReadData(uint16_t RegValue);
void LCD_Delay (uint32_t delay);
/* Link functions for SD Card peripheral over SPI */
void SD_IO_Init(void);
void SD_IO_CSState(uint8_t state);
void SD_IO_WriteReadData(const uint8_t *DataIn, uint8_t *DataOut, uint16_t DataLength);
void SD_IO_WriteData(const uint8_t *Data, uint16_t DataLength);
void SD_IO_ReadData(const uint8_t *Data, uint16_t DataLength);
uint8_t SD_IO_WriteByte(uint8_t Data);
#endif /* HAL_SPI_MODULE_ENABLED */
/** @defgroup STM3210C_EVAL_Exported_Functions STM3210C EVAL Exported Functions
* @{
*/
/**
* @brief This method returns the STM3210C EVAL BSP Driver revision
* @retval version : 0xXYZR (8bits for each decimal, R for RC)
*/
uint32_t BSP_GetVersion(void)
{
return __STM3210C_EVAL_BSP_VERSION;
}
/**
* @brief Configures LED GPIO.
* @param Led: Specifies the Led to be configured.
* This parameter can be one of following parameters:
* @arg LED1
* @arg LED2
* @arg LED3
* @arg LED4
*/
void BSP_LED_Init(Led_TypeDef Led)
{
GPIO_InitTypeDef gpioinitstruct = {0};
/* Enable the GPIO_LED clock */
LEDx_GPIO_CLK_ENABLE(Led);
/* Configure the GPIO_LED pin */
gpioinitstruct.Pin = LED_PIN[Led];
gpioinitstruct.Mode = GPIO_MODE_OUTPUT_PP;
gpioinitstruct.Pull = GPIO_NOPULL;
gpioinitstruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(LED_PORT[Led], &gpioinitstruct);
HAL_GPIO_WritePin(LED_PORT[Led], LED_PIN[Led], GPIO_PIN_RESET);
}
/**
* @brief Turns selected LED On.
* @param Led: Specifies the Led to be set on.
* This parameter can be one of following parameters:
* @arg LED1
* @arg LED2
* @arg LED3
* @arg LED4
*/
void BSP_LED_On(Led_TypeDef Led)
{
HAL_GPIO_WritePin(LED_PORT[Led], LED_PIN[Led], GPIO_PIN_SET);
}
/**
* @brief Turns selected LED Off.
* @param Led: Specifies the Led to be set off.
* This parameter can be one of following parameters:
* @arg LED1
* @arg LED2
* @arg LED3
* @arg LED4
*/
void BSP_LED_Off(Led_TypeDef Led)
{
HAL_GPIO_WritePin(LED_PORT[Led], LED_PIN[Led], GPIO_PIN_RESET);
}
/**
* @brief Toggles the selected LED.
* @param Led: Specifies the Led to be toggled.
* This parameter can be one of following parameters:
* @arg LED1
* @arg LED2
* @arg LED3
* @arg LED4
* @retval None
*/
void BSP_LED_Toggle(Led_TypeDef Led)
{
HAL_GPIO_TogglePin(LED_PORT[Led], LED_PIN[Led]);
}
/**
* @brief Configures push button GPIO and EXTI Line.
* @param Button: Button to be configured.
* This parameter can be one of the following values:
* @arg BUTTON_WAKEUP: Wakeup Push Button
* @arg BUTTON_TAMPER: Tamper Push Button
* @arg BUTTON_KEY: Key Push Button
* @param Button_Mode: Button mode requested.
* This parameter can be one of the following values:
* @arg BUTTON_MODE_GPIO: Button will be used as simple IO
* @arg BUTTON_MODE_EXTI: Button will be connected to EXTI line
* with interrupt generation capability
*/
void BSP_PB_Init(Button_TypeDef Button, ButtonMode_TypeDef Button_Mode)
{
GPIO_InitTypeDef gpioinitstruct = {0};
/* Enable the corresponding Push Button clock */
BUTTONx_GPIO_CLK_ENABLE(Button);
/* Configure Push Button pin as input */
gpioinitstruct.Pin = BUTTON_PIN[Button];
gpioinitstruct.Pull = GPIO_NOPULL;
gpioinitstruct.Speed = GPIO_SPEED_FREQ_HIGH;
if (Button_Mode == BUTTON_MODE_GPIO)
{
/* Configure Button pin as input */
gpioinitstruct.Mode = GPIO_MODE_INPUT;
HAL_GPIO_Init(BUTTON_PORT[Button], &gpioinitstruct);
}
else if (Button_Mode == BUTTON_MODE_EXTI)
{
if(Button != BUTTON_WAKEUP)
{
/* Configure Joystick Button pin as input with External interrupt, falling edge */
gpioinitstruct.Mode = GPIO_MODE_IT_FALLING;
}
else
{
/* Configure Key Push Button pin as input with External interrupt, rising edge */
gpioinitstruct.Mode = GPIO_MODE_IT_RISING;
}
HAL_GPIO_Init(BUTTON_PORT[Button], &gpioinitstruct);
/* Enable and set Button EXTI Interrupt to the lowest priority */
HAL_NVIC_SetPriority((IRQn_Type)(BUTTON_IRQn[Button]), 0x0F, 0);
HAL_NVIC_EnableIRQ((IRQn_Type)(BUTTON_IRQn[Button]));
}
}
/**
* @brief Returns the selected button state.
* @param Button: Button to be checked.
* This parameter can be one of the following values:
* @arg BUTTON_TAMPER: Key/Tamper Push Button
* @retval Button state
*/
uint32_t BSP_PB_GetState(Button_TypeDef Button)
{
return HAL_GPIO_ReadPin(BUTTON_PORT[Button], BUTTON_PIN[Button]);
}
#ifdef HAL_I2C_MODULE_ENABLED
/**
* @brief Configures joystick GPIO and EXTI modes.
* @param Joy_Mode: Button mode.
* This parameter can be one of the following values:
* @arg JOY_MODE_GPIO: Joystick pins will be used as simple IOs
* @arg JOY_MODE_EXTI: Joystick pins will be connected to EXTI line
* with interrupt generation capability
* @retval IO_OK: if all initializations are OK. Other value if error.
*/
uint8_t BSP_JOY_Init(JOYMode_TypeDef Joy_Mode)
{
uint8_t ret = 0;
/* Initialize the IO functionalities */
ret = BSP_IO_Init();
/* Configure joystick pins in IT mode */
if((ret == IO_OK) && (Joy_Mode == JOY_MODE_EXTI))
{
/* Configure joystick pins in IT mode */
BSP_IO_ConfigPin(JOY_ALL_PINS, IO_MODE_IT_FALLING_EDGE);
}
return ret;
}
/**
* @brief Returns the current joystick status.
* @retval Code of the joystick key pressed
* This code can be one of the following values:
* @arg JOY_NONE
* @arg JOY_SEL
* @arg JOY_DOWN
* @arg JOY_LEFT
* @arg JOY_RIGHT
* @arg JOY_UP
*/
JOYState_TypeDef BSP_JOY_GetState(void)
{
uint32_t tmp = 0;
/* Read the status joystick pins */
tmp = BSP_IO_ReadPin(JOY_ALL_PINS);
/* Check the pressed keys */
if((tmp & JOY_NONE_PIN) == JOY_NONE)
{
return(JOYState_TypeDef) JOY_NONE;
}
else if(!(tmp & JOY_SEL_PIN))
{
return(JOYState_TypeDef) JOY_SEL;
}
else if(!(tmp & JOY_DOWN_PIN))
{
return(JOYState_TypeDef) JOY_DOWN;
}
else if(!(tmp & JOY_LEFT_PIN))
{
return(JOYState_TypeDef) JOY_LEFT;
}
else if(!(tmp & JOY_RIGHT_PIN))
{
return(JOYState_TypeDef) JOY_RIGHT;
}
else if(!(tmp & JOY_UP_PIN))
{
return(JOYState_TypeDef) JOY_UP;
}
else
{
return(JOYState_TypeDef) JOY_NONE;
}
}
#endif /*HAL_I2C_MODULE_ENABLED*/
#ifdef HAL_UART_MODULE_ENABLED
/**
* @brief Configures COM port.
* @param COM: Specifies the COM port to be configured.
* This parameter can be one of following parameters:
* @arg COM1
* @param huart: pointer to a UART_HandleTypeDef structure that
* contains the configuration information for the specified UART peripheral.
*/
void BSP_COM_Init(COM_TypeDef COM, UART_HandleTypeDef* huart)
{
GPIO_InitTypeDef gpioinitstruct = {0};
/* Enable GPIO clock */
COMx_TX_GPIO_CLK_ENABLE(COM);
COMx_RX_GPIO_CLK_ENABLE(COM);
/* Enable USART clock */
COMx_CLK_ENABLE(COM);
/* Remap AFIO if needed */
AFIOCOMx_CLK_ENABLE(COM);
AFIOCOMx_REMAP(COM);
/* Configure USART Tx as alternate function push-pull */
gpioinitstruct.Pin = COM_TX_PIN[COM];
gpioinitstruct.Mode = GPIO_MODE_AF_PP;
gpioinitstruct.Speed = GPIO_SPEED_FREQ_HIGH;
gpioinitstruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(COM_TX_PORT[COM], &gpioinitstruct);
/* Configure USART Rx as alternate function push-pull */
gpioinitstruct.Mode = GPIO_MODE_INPUT;
gpioinitstruct.Pin = COM_RX_PIN[COM];
HAL_GPIO_Init(COM_RX_PORT[COM], &gpioinitstruct);
/* USART configuration */
huart->Instance = COM_USART[COM];
HAL_UART_Init(huart);
}
#endif /* HAL_UART_MODULE_ENABLED */
/**
* @}
*/
/** @defgroup STM3210C_EVAL_BusOperations_Functions STM3210C EVAL BusOperations Functions
* @{
*/
/*******************************************************************************
BUS OPERATIONS
*******************************************************************************/
#ifdef HAL_I2C_MODULE_ENABLED
/******************************* I2C Routines**********************************/
/**
* @brief Eval I2Cx MSP Initialization
* @param hi2c: I2C handle
*/
static void I2Cx_MspInit(I2C_HandleTypeDef *hi2c)
{
GPIO_InitTypeDef gpioinitstruct = {0};
if (hi2c->Instance == EVAL_I2Cx)
{
/*## Configure the GPIOs ################################################*/
/* Enable GPIO clock */
EVAL_I2Cx_SDA_GPIO_CLK_ENABLE();
EVAL_I2Cx_SCL_GPIO_CLK_ENABLE();
/* Configure I2C Tx as alternate function */
gpioinitstruct.Pin = EVAL_I2Cx_SCL_PIN;
gpioinitstruct.Mode = GPIO_MODE_AF_OD;
gpioinitstruct.Pull = GPIO_NOPULL;
gpioinitstruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(EVAL_I2Cx_SCL_GPIO_PORT, &gpioinitstruct);
/* Configure I2C Rx as alternate function */
gpioinitstruct.Pin = EVAL_I2Cx_SDA_PIN;
HAL_GPIO_Init(EVAL_I2Cx_SDA_GPIO_PORT, &gpioinitstruct);
/*## Configure the Eval I2Cx peripheral #######################################*/
/* Enable Eval_I2Cx clock */
EVAL_I2Cx_CLK_ENABLE();
/* Add delay related to RCC workaround */
while (READ_BIT(RCC->APB1ENR, RCC_APB1ENR_I2C1EN) != RCC_APB1ENR_I2C1EN) {};
/* Force the I2C Periheral Clock Reset */
EVAL_I2Cx_FORCE_RESET();
/* Release the I2C Periheral Clock Reset */
EVAL_I2Cx_RELEASE_RESET();
/* Enable and set Eval I2Cx Interrupt to the highest priority */
HAL_NVIC_SetPriority(EVAL_I2Cx_EV_IRQn, 0xE, 0);
HAL_NVIC_EnableIRQ(EVAL_I2Cx_EV_IRQn);
/* Enable and set Eval I2Cx Interrupt to the highest priority */
HAL_NVIC_SetPriority(EVAL_I2Cx_ER_IRQn, 0xE, 0);
HAL_NVIC_EnableIRQ(EVAL_I2Cx_ER_IRQn);
}
}
/**
* @brief Eval I2Cx Bus initialization
*/
static void I2Cx_Init(void)
{
if(HAL_I2C_GetState(&heval_I2c) == HAL_I2C_STATE_RESET)
{
heval_I2c.Instance = EVAL_I2Cx;
heval_I2c.Init.ClockSpeed = BSP_I2C_SPEED;
heval_I2c.Init.DutyCycle = I2C_DUTYCYCLE_2;
heval_I2c.Init.OwnAddress1 = 0;
heval_I2c.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
heval_I2c.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
heval_I2c.Init.OwnAddress2 = 0;
heval_I2c.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
heval_I2c.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
/* Init the I2C */
I2Cx_MspInit(&heval_I2c);
HAL_I2C_Init(&heval_I2c);
}
}
/**
* @brief Configures I2C Interrupt.
*/
static void I2Cx_ITConfig(void)
{
static uint8_t I2C_IT_Enabled = 0;
GPIO_InitTypeDef gpioinitstruct = {0};
if(I2C_IT_Enabled == 0)
{
I2C_IT_Enabled = 1;
/* Enable the GPIO EXTI clock */
IOE_IT_GPIO_CLK_ENABLE();
gpioinitstruct.Pin = IOE_IT_PIN;
gpioinitstruct.Pull = GPIO_NOPULL;
gpioinitstruct.Speed = GPIO_SPEED_FREQ_HIGH;
gpioinitstruct.Mode = GPIO_MODE_IT_FALLING;
HAL_GPIO_Init(IOE_IT_GPIO_PORT, &gpioinitstruct);
/* Set priority and Enable GPIO EXTI Interrupt */
HAL_NVIC_SetPriority((IRQn_Type)(IOE_IT_EXTI_IRQn), 0xE, 0);
HAL_NVIC_EnableIRQ((IRQn_Type)(IOE_IT_EXTI_IRQn));
}
}
/**
* @brief Reads multiple data.
* @param Addr: I2C address
* @param Reg: Reg address
* @param MemAddress: Internal memory address
* @param Buffer: Pointer to data buffer
* @param Length: Length of the data
* @retval Number of read data
*/
static HAL_StatusTypeDef I2Cx_ReadMultiple(uint8_t Addr, uint16_t Reg, uint16_t MemAddress, uint8_t *Buffer, uint16_t Length)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_I2C_Mem_Read(&heval_I2c, Addr, (uint16_t)Reg, MemAddress, Buffer, Length, I2cxTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* I2C error occurred */
I2Cx_Error(Addr);
}
return status;
}
/**
* @brief Write a value in a register of the device through BUS.
* @param Addr: Device address on BUS Bus.
* @param Reg: The target register address to write
* @param Value: The target register value to be written
*/
static void I2Cx_WriteData(uint16_t Addr, uint8_t Reg, uint8_t Value)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_I2C_Mem_Write(&heval_I2c, Addr, (uint16_t)Reg, I2C_MEMADD_SIZE_8BIT, &Value, 1, I2cxTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
I2Cx_Error(Addr);
}
}
/**
* @brief Write a value in a register of the device through BUS.
* @param Addr: Device address on BUS Bus.
* @param Reg: The target register address to write
* @param RegSize: The target register size (can be 8BIT or 16BIT)
* @param pBuffer: The target register value to be written
* @param Length: buffer size to be written
*/
static HAL_StatusTypeDef I2Cx_WriteBuffer(uint16_t Addr, uint8_t Reg, uint16_t RegSize, uint8_t *pBuffer, uint16_t Length)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_I2C_Mem_Write(&heval_I2c, Addr, (uint16_t)Reg, RegSize, pBuffer, Length, I2cxTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Re-Initiaize the BUS */
I2Cx_Error(Addr);
}
return status;
}
/**
* @brief Read a value in a register of the device through BUS.
* @param Addr: Device address on BUS Bus.
* @param Reg: The target register address to write
* @retval Data read at register @
*/
static uint8_t I2Cx_ReadData(uint16_t Addr, uint8_t Reg)
{
HAL_StatusTypeDef status = HAL_OK;
uint8_t value = 0;
status = HAL_I2C_Mem_Read(&heval_I2c, Addr, Reg, I2C_MEMADD_SIZE_8BIT, &value, 1, I2cxTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
I2Cx_Error(Addr);
}
return value;
}
/**
* @brief Reads multiple data on the BUS.
* @param Addr: I2C Address
* @param Reg: Reg Address
* @param RegSize : The target register size (can be 8BIT or 16BIT)
* @param pBuffer: pointer to read data buffer
* @param Length: length of the data
* @retval 0 if no problems to read multiple data
*/
static HAL_StatusTypeDef I2Cx_ReadBuffer(uint16_t Addr, uint8_t Reg, uint16_t RegSize, uint8_t *pBuffer, uint16_t Length)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_I2C_Mem_Read(&heval_I2c, Addr, (uint16_t)Reg, RegSize, pBuffer, Length, I2cxTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Re-Initiaize the BUS */
I2Cx_Error(Addr);
}
return status;
}
/**
* @brief Checks if target device is ready for communication.
* @note This function is used with Memory devices
* @param DevAddress: Target device address
* @param Trials: Number of trials
* @retval HAL status
*/
static HAL_StatusTypeDef I2Cx_IsDeviceReady(uint16_t DevAddress, uint32_t Trials)
{
return (HAL_I2C_IsDeviceReady(&heval_I2c, DevAddress, Trials, I2cxTimeout));
}
/**
* @brief Manages error callback by re-initializing I2C.
* @param Addr: I2C Address
*/
static void I2Cx_Error(uint8_t Addr)
{
/* De-initialize the IOE communication BUS */
HAL_I2C_DeInit(&heval_I2c);
/* Re-Initiaize the IOE communication BUS */
I2Cx_Init();
}
#endif /* HAL_I2C_MODULE_ENABLED */
/******************************* SPI Routines**********************************/
#ifdef HAL_SPI_MODULE_ENABLED
/**
* @brief Initializes SPI MSP.
*/
static void SPIx_MspInit(void)
{
GPIO_InitTypeDef gpioinitstruct = {0};
/*** Configure the GPIOs ***/
/* Enable GPIO clock */
EVAL_SPIx_SCK_GPIO_CLK_ENABLE();
EVAL_SPIx_MISO_MOSI_GPIO_CLK_ENABLE();
__HAL_RCC_AFIO_CLK_ENABLE();
__HAL_AFIO_REMAP_SPI3_ENABLE();
/* configure SPI SCK */
gpioinitstruct.Pin = EVAL_SPIx_SCK_PIN;
gpioinitstruct.Mode = GPIO_MODE_AF_PP;
gpioinitstruct.Pull = GPIO_NOPULL;
gpioinitstruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(EVAL_SPIx_SCK_GPIO_PORT, &gpioinitstruct);
/* configure SPI MISO and MOSI */
gpioinitstruct.Pin = (EVAL_SPIx_MISO_PIN | EVAL_SPIx_MOSI_PIN);
gpioinitstruct.Mode = GPIO_MODE_AF_PP;
gpioinitstruct.Pull = GPIO_NOPULL;
gpioinitstruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(EVAL_SPIx_MISO_MOSI_GPIO_PORT, &gpioinitstruct);
/*** Configure the SPI peripheral ***/
/* Enable SPI clock */
EVAL_SPIx_CLK_ENABLE();
}
/**
* @brief Initializes SPI HAL.
*/
static void SPIx_Init(void)
{
/* DeInitializes the SPI peripheral */
heval_Spi.Instance = EVAL_SPIx;
HAL_SPI_DeInit(&heval_Spi);
/* SPI Config */
/* SPI baudrate is set to 9 MHz (PCLK2/SPI_BaudRatePrescaler = 72/8 = 9 MHz) */
heval_Spi.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
heval_Spi.Init.Direction = SPI_DIRECTION_2LINES;
heval_Spi.Init.CLKPhase = SPI_PHASE_2EDGE;
heval_Spi.Init.CLKPolarity = SPI_POLARITY_HIGH;
heval_Spi.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
heval_Spi.Init.CRCPolynomial = 7;
heval_Spi.Init.DataSize = SPI_DATASIZE_8BIT;
heval_Spi.Init.FirstBit = SPI_FIRSTBIT_MSB;
heval_Spi.Init.NSS = SPI_NSS_SOFT;
heval_Spi.Init.TIMode = SPI_TIMODE_DISABLE;
heval_Spi.Init.Mode = SPI_MODE_MASTER;
SPIx_MspInit();
if (HAL_SPI_Init(&heval_Spi) != HAL_OK)
{
/* Should not occur */
while(1) {};
}
}
/**
* @brief SPI Read 4 bytes from device
* @retval Read data
*/
static uint32_t SPIx_Read(void)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t readvalue = 0;
uint32_t writevalue = 0xFFFFFFFF;
status = HAL_SPI_TransmitReceive(&heval_Spi, (uint8_t*) &writevalue, (uint8_t*) &readvalue, 1, SpixTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
SPIx_Error();
}
return readvalue;
}
/**
* @brief SPI Write a byte to device
* @param DataIn: value to be written
* @param DataOut: value to be read
* @param DataLength: length of data
*/
static void SPIx_WriteReadData(const uint8_t *DataIn, uint8_t *DataOut, uint16_t DataLength)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_SPI_TransmitReceive(&heval_Spi, (uint8_t*) DataIn, DataOut, DataLength, SpixTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
SPIx_Error();
}
}
/**
* @brief SPI Write Data to device
* @param Data: value to be written
* @param DataLength: length of data
*/
static void SPIx_WriteData(const uint8_t *Data, uint16_t DataLength)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_SPI_Transmit(&heval_Spi, (uint8_t*) Data, DataLength, SpixTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
SPIx_Error();
}
}
/**
* @brief SPI Read Data from device
* @param Data: value to be read
* @param DataLength: length of data
*/
static void SPIx_ReadData(const uint8_t *Data, uint16_t DataLength)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_SPI_Receive(&heval_Spi, (uint8_t*) Data, DataLength, SpixTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
SPIx_Error();
}
}
/**
* @brief SPI Write a byte to device.
* @param Value: value to be written
*/
static void SPIx_Write(uint8_t Value)
{
HAL_StatusTypeDef status = HAL_OK;
uint8_t data;
status = HAL_SPI_TransmitReceive(&heval_Spi, (uint8_t*) &Value, &data, 1, SpixTimeout);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
SPIx_Error();
}
}
/**
* @brief SPI error treatment function
* @retval None
*/
static void SPIx_Error (void)
{
/* De-initialize the SPI communication BUS */
HAL_SPI_DeInit(&heval_Spi);
/* Re-Initiaize the SPI communication BUS */
SPIx_Init();
}
#endif /* HAL_SPI_MODULE_ENABLED */
/**
* @}
*/
/** @defgroup STM3210C_EVAL_LinkOperations_Functions STM3210C EVAL LinkOperations Functions
* @{
*/
/*******************************************************************************
LINK OPERATIONS
*******************************************************************************/
#ifdef HAL_I2C_MODULE_ENABLED
/***************************** LINK IOE ***************************************/
/**
* @brief Initializes IOE low level.
*/
void IOE_Init(void)
{
I2Cx_Init();
}
/**
* @brief Configures IOE low level Interrupt.
*/
void IOE_ITConfig(void)
{
I2Cx_ITConfig();
}
/**
* @brief IOE writes single data.
* @param Addr: I2C address
* @param Reg: Reg address
* @param Value: Data to be written
*/
void IOE_Write(uint8_t Addr, uint8_t Reg, uint8_t Value)
{
I2Cx_WriteData(Addr, Reg, Value);
}
/**
* @brief IOE reads single data.
* @param Addr: I2C address
* @param Reg: Reg address
* @retval Read data
*/
uint8_t IOE_Read(uint8_t Addr, uint8_t Reg)
{
return I2Cx_ReadData(Addr, Reg);
}
/**
* @brief IOE reads multiple data.
* @param Addr: I2C address
* @param Reg: Reg address
* @param Buffer: Pointer to data buffer
* @param Length: Length of the data
* @retval Number of read data
*/
uint16_t IOE_ReadMultiple(uint8_t Addr, uint8_t Reg, uint8_t *Buffer, uint16_t Length)
{
return I2Cx_ReadMultiple(Addr, Reg, I2C_MEMADD_SIZE_8BIT, Buffer, Length);
}
/**
* @brief IOE delay.
* @param Delay: Delay in ms
*/
void IOE_Delay(uint32_t Delay)
{
HAL_Delay(Delay);
}
#endif /* HAL_I2C_MODULE_ENABLED */
#ifdef HAL_SPI_MODULE_ENABLED
/********************************* LINK LCD ***********************************/
/**
* @brief Configures the LCD_SPI interface.
*/
void LCD_IO_Init(void)
{
GPIO_InitTypeDef gpioinitstruct;
/* Configure the LCD Control pins ------------------------------------------*/
LCD_NCS_GPIO_CLK_ENABLE();
/* Configure NCS in Output Push-Pull mode */
gpioinitstruct.Pin = LCD_NCS_PIN;
gpioinitstruct.Mode = GPIO_MODE_OUTPUT_PP;
gpioinitstruct.Pull = GPIO_NOPULL;
gpioinitstruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(LCD_NCS_GPIO_PORT, &gpioinitstruct);
/* Set or Reset the control line */
LCD_CS_LOW();
LCD_CS_HIGH();
SPIx_Init();
}
/**
* @brief Write register value.
* @param pData Pointer on the register value
* @param Size Size of byte to transmit to the register
*/
void LCD_IO_WriteMultipleData(uint8_t *pData, uint32_t Size)
{
uint32_t counter = 0;
/* Reset LCD control line(/CS) and Send data */
LCD_CS_LOW();
/* Send Start Byte */
SPIx_Write(START_BYTE | LCD_WRITE_REG);
for (counter = Size; counter != 0; counter--)
{
while(((heval_Spi.Instance->SR) & SPI_FLAG_TXE) != SPI_FLAG_TXE)
{
}
/* Need to invert bytes for LCD*/
*((__IO uint8_t*)&heval_Spi.Instance->DR) = *(pData+1);
while(((heval_Spi.Instance->SR) & SPI_FLAG_TXE) != SPI_FLAG_TXE)
{
}
*((__IO uint8_t*)&heval_Spi.Instance->DR) = *pData;
counter--;
pData += 2;
}
/* Wait until the bus is ready before releasing Chip select */
while(((heval_Spi.Instance->SR) & SPI_FLAG_BSY) != RESET)
{
}
/* Reset LCD control line(/CS) and Send data */
LCD_CS_HIGH();
}
/**
* @brief register address.
* @param Reg
*/
void LCD_IO_WriteReg(uint8_t Reg)
{
/* Reset LCD control line(/CS) and Send command */
LCD_CS_LOW();
/* Send Start Byte */
SPIx_Write(START_BYTE | SET_INDEX);
/* Write 16-bit Reg Index (High Byte is 0) */
SPIx_Write(0x00);
SPIx_Write(Reg);
/* Deselect : Chip Select high */
LCD_CS_HIGH();
}
/**
* @brief Read register value.
* @param Reg
*/
uint16_t LCD_IO_ReadData(uint16_t Reg)
{
uint32_t readvalue = 0;
/* Send Reg value to Read */
LCD_IO_WriteReg(Reg);
/* Reset LCD control line(/CS) and Send command */
LCD_CS_LOW();
/* Send Start Byte */
SPIx_Write(START_BYTE | LCD_READ_REG);
/* Read Upper Byte */
SPIx_Write(0xFF);
readvalue = SPIx_Read();
readvalue = readvalue << 8;
readvalue |= SPIx_Read();
HAL_Delay(10);
/* Deselect : Chip Select high */
LCD_CS_HIGH();
return readvalue;
}
/**
* @brief Wait for loop in ms.
* @param Delay in ms.
* @retval None
*/
void LCD_Delay (uint32_t Delay)
{
HAL_Delay(Delay);
}
/******************************** LINK SD Card ********************************/
/**
* @brief Initializes the SD Card and put it into StandBy State (Ready for
* data transfer).
*/
void SD_IO_Init(void)
{
GPIO_InitTypeDef gpioinitstruct;
uint8_t counter;
/* SD_CS_GPIO and SD_DETECT_GPIO Periph clock enable */
SD_CS_GPIO_CLK_ENABLE();
SD_DETECT_GPIO_CLK_ENABLE();
/* Configure SD_CS_PIN pin: SD Card CS pin */
gpioinitstruct.Pin = SD_CS_PIN;
gpioinitstruct.Mode = GPIO_MODE_OUTPUT_PP;
gpioinitstruct.Pull = GPIO_PULLUP;
gpioinitstruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(SD_CS_GPIO_PORT, &gpioinitstruct);
/* Configure SD_DETECT_PIN pin: SD Card detect pin */
gpioinitstruct.Pin = SD_DETECT_PIN;
gpioinitstruct.Mode = GPIO_MODE_IT_RISING_FALLING;
gpioinitstruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(SD_DETECT_GPIO_PORT, &gpioinitstruct);
/*------------Put SD in SPI mode--------------*/
/* SD SPI Config */
SPIx_Init();
/* SD chip select high */
SD_CS_HIGH();
/* Send dummy byte 0xFF, 10 times with CS high */
/* Rise CS and MOSI for 80 clocks cycles */
for (counter = 0; counter <= 9; counter++)
{
/* Send dummy byte 0xFF */
SD_IO_WriteByte(SD_DUMMY_BYTE);
}
}
/**
* @brief Set the SD_CS pin.
* @param pin value.
* @retval None
*/
void SD_IO_CSState(uint8_t val)
{
if(val == 1)
{
SD_CS_HIGH();
}
else
{
SD_CS_LOW();
}
}
/**
* @brief Write a byte on the SD.
* @param DataIn: value to be written
* @param DataOut: value to be read
* @param DataLength: length of data
*/
void SD_IO_WriteReadData(const uint8_t *DataIn, uint8_t *DataOut, uint16_t DataLength)
{
/* Send the byte */
SPIx_WriteReadData(DataIn, DataOut, DataLength);
}
/**
* @brief Write a byte on the SD.
* @param Data: value to be written
* @param DataLength: length of data
*/
void SD_IO_WriteData(const uint8_t *Data, uint16_t DataLength)
{
/* Send the byte */
SPIx_WriteData(Data, DataLength);
}
/**
* @brief Read a byte from the SD.
* @param Data: value to be read
* @param DataLength: length of data
*/
void SD_IO_ReadData(const uint8_t *Data, uint16_t DataLength)
{
/* Send the byte */
SPIx_ReadData(Data, DataLength);
}
/**
* @brief Writes a byte on the SD.
* @param Data: byte to send.
*/
uint8_t SD_IO_WriteByte(uint8_t Data)
{
uint8_t tmp;
/* Send the byte */
SPIx_WriteReadData(&Data,&tmp,1);
return tmp;
}
#endif /* HAL_SPI_MODULE_ENABLED */
#ifdef HAL_I2C_MODULE_ENABLED
/********************************* LINK I2C EEPROM *****************************/
/**
* @brief Initializes peripherals used by the I2C EEPROM driver.
*/
void EEPROM_I2C_IO_Init(void)
{
I2Cx_Init();
}
/**
* @brief Write data to I2C EEPROM driver
* @param DevAddress: Target device address
* @param MemAddress: Internal memory address
* @param pBuffer: Pointer to data buffer
* @param BufferSize: Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef EEPROM_I2C_IO_WriteData(uint16_t DevAddress, uint16_t MemAddress, uint8_t* pBuffer, uint32_t BufferSize)
{
return (I2Cx_WriteBuffer(DevAddress, MemAddress, I2C_MEMADD_SIZE_16BIT, pBuffer, BufferSize));
}
/**
* @brief Read data from I2C EEPROM driver
* @param DevAddress: Target device address
* @param MemAddress: Internal memory address
* @param pBuffer: Pointer to data buffer
* @param BufferSize: Amount of data to be read
* @retval HAL status
*/
HAL_StatusTypeDef EEPROM_I2C_IO_ReadData(uint16_t DevAddress, uint16_t MemAddress, uint8_t* pBuffer, uint32_t BufferSize)
{
return (I2Cx_ReadBuffer(DevAddress, MemAddress, I2C_MEMADD_SIZE_16BIT, pBuffer, BufferSize));
}
/**
* @brief Checks if target device is ready for communication.
* @note This function is used with Memory devices
* @param DevAddress: Target device address
* @param Trials: Number of trials
* @retval HAL status
*/
HAL_StatusTypeDef EEPROM_I2C_IO_IsDeviceReady(uint16_t DevAddress, uint32_t Trials)
{
return (I2Cx_IsDeviceReady(DevAddress, Trials));
}
/********************************* LINK I2C TEMPERATURE SENSOR *****************************/
/**
* @brief Initializes peripherals used by the I2C Temperature Sensor driver.
* @retval None
*/
void TSENSOR_IO_Init(void)
{
I2Cx_Init();
}
/**
* @brief Writes one byte to the TSENSOR.
* @param DevAddress: Target device address
* @param pBuffer: Pointer to data buffer
* @param WriteAddr: TSENSOR's internal address to write to.
* @param Length: Number of data to write
*/
void TSENSOR_IO_Write(uint16_t DevAddress, uint8_t* pBuffer, uint8_t WriteAddr, uint16_t Length)
{
I2Cx_WriteBuffer(DevAddress, WriteAddr, I2C_MEMADD_SIZE_8BIT, pBuffer, Length);
}
/**
* @brief Reads one byte from the TSENSOR.
* @param DevAddress: Target device address
* @param pBuffer : pointer to the buffer that receives the data read from the TSENSOR.
* @param ReadAddr : TSENSOR's internal address to read from.
* @param Length: Number of data to read
*/
void TSENSOR_IO_Read(uint16_t DevAddress, uint8_t* pBuffer, uint8_t ReadAddr, uint16_t Length)
{
I2Cx_ReadBuffer(DevAddress, ReadAddr, I2C_MEMADD_SIZE_8BIT, pBuffer, Length);
}
/**
* @brief Checks if Temperature Sensor is ready for communication.
* @param DevAddress: Target device address
* @param Trials: Number of trials
* @retval HAL status
*/
uint16_t TSENSOR_IO_IsDeviceReady(uint16_t DevAddress, uint32_t Trials)
{
return (I2Cx_IsDeviceReady(DevAddress, Trials));
}
/***************************** LINK ACCELERO *****************************/
/**
* @brief Configures ACCELEROMETER SPI interface.
*/
void ACCELERO_IO_Init(void)
{
/* Initialize the IO functionalities */
BSP_IO_Init();
}
/**
* @brief Configures ACCELERO INT2 config.
EXTI0 is already used by user button so INT1 is configured here
*/
void ACCELERO_IO_ITConfig(void)
{
BSP_IO_ConfigPin(MEMS_ALL_PINS, IO_MODE_IT_FALLING_EDGE);
}
/**
* @brief Writes one byte to the ACCELEROMETER.
* @param pBuffer : pointer to the buffer containing the data to be written to the ACCELEROMETER.
* @param WriteAddr : ACCELEROMETER's internal address to write to.
* @param NumByteToWrite: Number of bytes to write.
*/
void ACCELERO_IO_Write(uint8_t* pBuffer, uint8_t WriteAddr, uint16_t NumByteToWrite)
{
I2Cx_WriteBuffer(L1S302DL_I2C_ADDRESS, WriteAddr, I2C_MEMADD_SIZE_8BIT, pBuffer, NumByteToWrite);
}
/**
* @brief Reads a block of data from the ACCELEROMETER.
* @param pBuffer : pointer to the buffer that receives the data read from the ACCELEROMETER.
* @param ReadAddr : ACCELEROMETER's internal address to read from.
* @param NumByteToRead : number of bytes to read from the ACCELEROMETER.
*/
void ACCELERO_IO_Read(uint8_t* pBuffer, uint8_t ReadAddr, uint16_t NumByteToRead)
{
I2Cx_ReadBuffer(L1S302DL_I2C_ADDRESS, ReadAddr, I2C_MEMADD_SIZE_8BIT, pBuffer, NumByteToRead);
}
/********************************* LINK AUDIO ***********************************/
/**
* @brief Initializes Audio low level.
*/
void AUDIO_IO_Init(void)
{
/* Initialize the IO functionalities */
BSP_IO_Init();
BSP_IO_ConfigPin(AUDIO_RESET_PIN, IO_MODE_OUTPUT);
/* Power Down the codec */
BSP_IO_WritePin(AUDIO_RESET_PIN, GPIO_PIN_RESET);
/* wait for a delay to insure registers erasing */
HAL_Delay(5);
/* Power on the codec */
BSP_IO_WritePin(AUDIO_RESET_PIN, GPIO_PIN_SET);
/* wait for a delay to insure registers erasing */
HAL_Delay(5);
}
/**
* @brief DeInitializes Audio low level.
* @note This function is intentionally kept empty, user should define it.
*/
void AUDIO_IO_DeInit(void)
{
}
/**
* @brief Writes a single data.
* @param Addr: I2C address
* @param Reg: Reg address
* @param Value: Data to be written
*/
void AUDIO_IO_Write (uint8_t Addr, uint8_t Reg, uint8_t Value)
{
I2Cx_WriteData(Addr, Reg, Value);
}
/**
* @brief Reads a single data.
* @param Addr: I2C address
* @param Reg: Reg address
* @retval Data to be read
*/
uint8_t AUDIO_IO_Read (uint8_t Addr, uint8_t Reg)
{
return I2Cx_ReadData(Addr, Reg);
}
#endif /* HAL_I2C_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/