427 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			427 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
| /* ----------------------------------------------------------------------
 | |
|  * Project:      CMSIS DSP Library
 | |
|  * Title:        arm_rfft_q15.c
 | |
|  * Description:  RFFT & RIFFT Q15 process function
 | |
|  *
 | |
|  * $Date:        27. January 2017
 | |
|  * $Revision:    V.1.5.1
 | |
|  *
 | |
|  * Target Processor: Cortex-M cores
 | |
|  * -------------------------------------------------------------------- */
 | |
| /*
 | |
|  * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the License); you may
 | |
|  * not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  * www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | |
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #include "arm_math.h"
 | |
| 
 | |
| /* ----------------------------------------------------------------------
 | |
|  * Internal functions prototypes
 | |
|  * -------------------------------------------------------------------- */
 | |
| 
 | |
| void arm_split_rfft_q15(
 | |
|     q15_t * pSrc,
 | |
|     uint32_t fftLen,
 | |
|     q15_t * pATable,
 | |
|     q15_t * pBTable,
 | |
|     q15_t * pDst,
 | |
|     uint32_t modifier);
 | |
| 
 | |
| void arm_split_rifft_q15(
 | |
|     q15_t * pSrc,
 | |
|     uint32_t fftLen,
 | |
|     q15_t * pATable,
 | |
|     q15_t * pBTable,
 | |
|     q15_t * pDst,
 | |
|     uint32_t modifier);
 | |
| 
 | |
| /**
 | |
| * @addtogroup RealFFT
 | |
| * @{
 | |
| */
 | |
| 
 | |
| /**
 | |
| * @brief Processing function for the Q15 RFFT/RIFFT.
 | |
| * @param[in]  *S    points to an instance of the Q15 RFFT/RIFFT structure.
 | |
| * @param[in]  *pSrc points to the input buffer.
 | |
| * @param[out] *pDst points to the output buffer.
 | |
| * @return none.
 | |
| *
 | |
| * \par Input an output formats:
 | |
| * \par
 | |
| * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process.
 | |
| * Hence the output format is different for different RFFT sizes.
 | |
| * The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT:
 | |
| * \par
 | |
| * \image html RFFTQ15.gif "Input and Output Formats for Q15 RFFT"
 | |
| * \par
 | |
| * \image html RIFFTQ15.gif "Input and Output Formats for Q15 RIFFT"
 | |
| */
 | |
| 
 | |
| void arm_rfft_q15(
 | |
|     const arm_rfft_instance_q15 * S,
 | |
|     q15_t * pSrc,
 | |
|     q15_t * pDst)
 | |
| {
 | |
|     const arm_cfft_instance_q15 *S_CFFT = S->pCfft;
 | |
|     uint32_t i;
 | |
|     uint32_t L2 = S->fftLenReal >> 1;
 | |
| 
 | |
|     /* Calculation of RIFFT of input */
 | |
|     if (S->ifftFlagR == 1U)
 | |
|     {
 | |
|         /*  Real IFFT core process */
 | |
|         arm_split_rifft_q15(pSrc, L2, S->pTwiddleAReal,
 | |
|                             S->pTwiddleBReal, pDst, S->twidCoefRModifier);
 | |
| 
 | |
|         /* Complex IFFT process */
 | |
|         arm_cfft_q15(S_CFFT, pDst, S->ifftFlagR, S->bitReverseFlagR);
 | |
| 
 | |
|         for(i=0;i<S->fftLenReal;i++)
 | |
|         {
 | |
|             pDst[i] = pDst[i] << 1;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         /* Calculation of RFFT of input */
 | |
| 
 | |
|         /* Complex FFT process */
 | |
|         arm_cfft_q15(S_CFFT, pSrc, S->ifftFlagR, S->bitReverseFlagR);
 | |
| 
 | |
|         /*  Real FFT core process */
 | |
|         arm_split_rfft_q15(pSrc, L2, S->pTwiddleAReal,
 | |
|                             S->pTwiddleBReal, pDst, S->twidCoefRModifier);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
| * @} end of RealFFT group
 | |
| */
 | |
| 
 | |
| /**
 | |
| * @brief  Core Real FFT process
 | |
| * @param  *pSrc 				points to the input buffer.
 | |
| * @param  fftLen  				length of FFT.
 | |
| * @param  *pATable 			points to the A twiddle Coef buffer.
 | |
| * @param  *pBTable 			points to the B twiddle Coef buffer.
 | |
| * @param  *pDst 				points to the output buffer.
 | |
| * @param  modifier 	        twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
 | |
| * @return none.
 | |
| * The function implements a Real FFT
 | |
| */
 | |
| 
 | |
| void arm_split_rfft_q15(
 | |
|     q15_t * pSrc,
 | |
|     uint32_t fftLen,
 | |
|     q15_t * pATable,
 | |
|     q15_t * pBTable,
 | |
|     q15_t * pDst,
 | |
|     uint32_t modifier)
 | |
| {
 | |
|     uint32_t i;                                    /* Loop Counter */
 | |
|     q31_t outR, outI;                              /* Temporary variables for output */
 | |
|     q15_t *pCoefA, *pCoefB;                        /* Temporary pointers for twiddle factors */
 | |
|     q15_t *pSrc1, *pSrc2;
 | |
| #if defined (ARM_MATH_DSP)
 | |
|     q15_t *pD1, *pD2;
 | |
| #endif
 | |
| 
 | |
|     //  pSrc[2U * fftLen] = pSrc[0];
 | |
|     //  pSrc[(2U * fftLen) + 1U] = pSrc[1];
 | |
| 
 | |
|     pCoefA = &pATable[modifier * 2U];
 | |
|     pCoefB = &pBTable[modifier * 2U];
 | |
| 
 | |
|     pSrc1 = &pSrc[2];
 | |
|     pSrc2 = &pSrc[(2U * fftLen) - 2U];
 | |
| 
 | |
| #if defined (ARM_MATH_DSP)
 | |
| 
 | |
|     /* Run the below code for Cortex-M4 and Cortex-M3 */
 | |
|     i = 1U;
 | |
|     pD1 = pDst + 2;
 | |
|     pD2 = pDst + (4U * fftLen) - 2;
 | |
| 
 | |
|     for(i = fftLen - 1; i > 0; i--)
 | |
|     {
 | |
|         /*
 | |
|         outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
 | |
|         + pSrc[2 * n - 2 * i] * pBTable[2 * i] +
 | |
|         pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
 | |
|         */
 | |
| 
 | |
|         /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
 | |
|         pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
 | |
|         pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */
 | |
| 
 | |
| 
 | |
| #ifndef ARM_MATH_BIG_ENDIAN
 | |
| 
 | |
|         /* pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] */
 | |
|         outR = __SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA));
 | |
| 
 | |
| #else
 | |
| 
 | |
|         /* -(pSrc[2 * i + 1] * pATable[2 * i + 1] - pSrc[2 * i] * pATable[2 * i]) */
 | |
|         outR = -(__SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA)));
 | |
| 
 | |
| #endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
 | |
| 
 | |
|         /* pSrc[2 * n - 2 * i] * pBTable[2 * i] +
 | |
|         pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
 | |
|         outR = __SMLAD(*__SIMD32(pSrc2), *__SIMD32(pCoefB), outR) >> 16U;
 | |
| 
 | |
|         /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
 | |
|         pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
 | |
| 
 | |
| #ifndef ARM_MATH_BIG_ENDIAN
 | |
| 
 | |
|         outI = __SMUSDX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
 | |
| 
 | |
| #else
 | |
| 
 | |
|         outI = __SMUSDX(*__SIMD32(pCoefB), *__SIMD32(pSrc2)--);
 | |
| 
 | |
| #endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
 | |
| 
 | |
|         /* (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] */
 | |
|         outI = __SMLADX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), outI);
 | |
| 
 | |
|         /* write output */
 | |
|         *pD1++ = (q15_t) outR;
 | |
|         *pD1++ = outI >> 16U;
 | |
| 
 | |
|         /* write complex conjugate output */
 | |
|         pD2[0] = (q15_t) outR;
 | |
|         pD2[1] = -(outI >> 16U);
 | |
|         pD2 -= 2;
 | |
| 
 | |
|         /* update coefficient pointer */
 | |
|         pCoefB = pCoefB + (2U * modifier);
 | |
|         pCoefA = pCoefA + (2U * modifier);
 | |
|     }
 | |
| 
 | |
|     pDst[2U * fftLen] = (pSrc[0] - pSrc[1]) >> 1;
 | |
|     pDst[(2U * fftLen) + 1U] = 0;
 | |
| 
 | |
|     pDst[0] = (pSrc[0] + pSrc[1]) >> 1;
 | |
|     pDst[1] = 0;
 | |
| 
 | |
| #else
 | |
| 
 | |
|     /* Run the below code for Cortex-M0 */
 | |
|     i = 1U;
 | |
| 
 | |
|     while (i < fftLen)
 | |
|     {
 | |
|         /*
 | |
|         outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
 | |
|         + pSrc[2 * n - 2 * i] * pBTable[2 * i] +
 | |
|         pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
 | |
|         */
 | |
| 
 | |
|         outR = *pSrc1 * *pCoefA;
 | |
|         outR = outR - (*(pSrc1 + 1) * *(pCoefA + 1));
 | |
|         outR = outR + (*pSrc2 * *pCoefB);
 | |
|         outR = (outR + (*(pSrc2 + 1) * *(pCoefB + 1))) >> 16;
 | |
| 
 | |
| 
 | |
|         /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
 | |
|         pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
 | |
|         pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
 | |
|         */
 | |
| 
 | |
|         outI = *pSrc2 * *(pCoefB + 1);
 | |
|         outI = outI - (*(pSrc2 + 1) * *pCoefB);
 | |
|         outI = outI + (*(pSrc1 + 1) * *pCoefA);
 | |
|         outI = outI + (*pSrc1 * *(pCoefA + 1));
 | |
| 
 | |
|         /* update input pointers */
 | |
|         pSrc1 += 2U;
 | |
|         pSrc2 -= 2U;
 | |
| 
 | |
|         /* write output */
 | |
|         pDst[2U * i] = (q15_t) outR;
 | |
|         pDst[(2U * i) + 1U] = outI >> 16U;
 | |
| 
 | |
|         /* write complex conjugate output */
 | |
|         pDst[(4U * fftLen) - (2U * i)] = (q15_t) outR;
 | |
|         pDst[((4U * fftLen) - (2U * i)) + 1U] = -(outI >> 16U);
 | |
| 
 | |
|         /* update coefficient pointer */
 | |
|         pCoefB = pCoefB + (2U * modifier);
 | |
|         pCoefA = pCoefA + (2U * modifier);
 | |
| 
 | |
|         i++;
 | |
|     }
 | |
| 
 | |
|     pDst[2U * fftLen] = (pSrc[0] - pSrc[1]) >> 1;
 | |
|     pDst[(2U * fftLen) + 1U] = 0;
 | |
| 
 | |
|     pDst[0] = (pSrc[0] + pSrc[1]) >> 1;
 | |
|     pDst[1] = 0;
 | |
| 
 | |
| #endif /* #if defined (ARM_MATH_DSP) */
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
| * @brief  Core Real IFFT process
 | |
| * @param[in]   *pSrc 				points to the input buffer.
 | |
| * @param[in]   fftLen  		    length of FFT.
 | |
| * @param[in]   *pATable 			points to the twiddle Coef A buffer.
 | |
| * @param[in]   *pBTable 			points to the twiddle Coef B buffer.
 | |
| * @param[out]  *pDst 				points to the output buffer.
 | |
| * @param[in]   modifier 	        twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
 | |
| * @return none.
 | |
| * The function implements a Real IFFT
 | |
| */
 | |
| void arm_split_rifft_q15(
 | |
|     q15_t * pSrc,
 | |
|     uint32_t fftLen,
 | |
|     q15_t * pATable,
 | |
|     q15_t * pBTable,
 | |
|     q15_t * pDst,
 | |
|     uint32_t modifier)
 | |
| {
 | |
|     uint32_t i;                                    /* Loop Counter */
 | |
|     q31_t outR, outI;                              /* Temporary variables for output */
 | |
|     q15_t *pCoefA, *pCoefB;                        /* Temporary pointers for twiddle factors */
 | |
|     q15_t *pSrc1, *pSrc2;
 | |
|     q15_t *pDst1 = &pDst[0];
 | |
| 
 | |
|     pCoefA = &pATable[0];
 | |
|     pCoefB = &pBTable[0];
 | |
| 
 | |
|     pSrc1 = &pSrc[0];
 | |
|     pSrc2 = &pSrc[2U * fftLen];
 | |
| 
 | |
| #if defined (ARM_MATH_DSP)
 | |
| 
 | |
|     /* Run the below code for Cortex-M4 and Cortex-M3 */
 | |
|     i = fftLen;
 | |
| 
 | |
|     while (i > 0U)
 | |
|     {
 | |
|         /*
 | |
|         outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
 | |
|         pIn[2 * n - 2 * i] * pBTable[2 * i] -
 | |
|         pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
 | |
| 
 | |
|         outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
 | |
|         pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
 | |
|         pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
 | |
|         */
 | |
| 
 | |
| 
 | |
| #ifndef ARM_MATH_BIG_ENDIAN
 | |
| 
 | |
|         /* pIn[2 * n - 2 * i] * pBTable[2 * i] -
 | |
|         pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
 | |
|         outR = __SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB));
 | |
| 
 | |
| #else
 | |
| 
 | |
|         /* -(-pIn[2 * n - 2 * i] * pBTable[2 * i] +
 | |
|         pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1])) */
 | |
|         outR = -(__SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB)));
 | |
| 
 | |
| #endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
 | |
| 
 | |
|         /* pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
 | |
|         pIn[2 * n - 2 * i] * pBTable[2 * i] */
 | |
|         outR = __SMLAD(*__SIMD32(pSrc1), *__SIMD32(pCoefA), outR) >> 16U;
 | |
| 
 | |
|         /*
 | |
|         -pIn[2 * n - 2 * i] * pBTable[2 * i + 1] +
 | |
|         pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
 | |
|         outI = __SMUADX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
 | |
| 
 | |
|         /* pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] */
 | |
| 
 | |
| #ifndef ARM_MATH_BIG_ENDIAN
 | |
| 
 | |
|         outI = __SMLSDX(*__SIMD32(pCoefA), *__SIMD32(pSrc1)++, -outI);
 | |
| 
 | |
| #else
 | |
| 
 | |
|         outI = __SMLSDX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), -outI);
 | |
| 
 | |
| #endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
 | |
|         /* write output */
 | |
| 
 | |
| #ifndef ARM_MATH_BIG_ENDIAN
 | |
| 
 | |
|         *__SIMD32(pDst1)++ = __PKHBT(outR, (outI >> 16U), 16);
 | |
| 
 | |
| #else
 | |
| 
 | |
|         *__SIMD32(pDst1)++ = __PKHBT((outI >> 16U), outR, 16);
 | |
| 
 | |
| #endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
 | |
| 
 | |
|         /* update coefficient pointer */
 | |
|         pCoefB = pCoefB + (2U * modifier);
 | |
|         pCoefA = pCoefA + (2U * modifier);
 | |
| 
 | |
|         i--;
 | |
|     }
 | |
| #else
 | |
|     /* Run the below code for Cortex-M0 */
 | |
|     i = fftLen;
 | |
| 
 | |
|     while (i > 0U)
 | |
|     {
 | |
|         /*
 | |
|         outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
 | |
|         pIn[2 * n - 2 * i] * pBTable[2 * i] -
 | |
|         pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
 | |
|         */
 | |
| 
 | |
|         outR = *pSrc2 * *pCoefB;
 | |
|         outR = outR - (*(pSrc2 + 1) * *(pCoefB + 1));
 | |
|         outR = outR + (*pSrc1 * *pCoefA);
 | |
|         outR = (outR + (*(pSrc1 + 1) * *(pCoefA + 1))) >> 16;
 | |
| 
 | |
|         /*
 | |
|         outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
 | |
|         pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
 | |
|         pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
 | |
|         */
 | |
| 
 | |
|         outI = *(pSrc1 + 1) * *pCoefA;
 | |
|         outI = outI - (*pSrc1 * *(pCoefA + 1));
 | |
|         outI = outI - (*pSrc2 * *(pCoefB + 1));
 | |
|         outI = outI - (*(pSrc2 + 1) * *(pCoefB));
 | |
| 
 | |
|         /* update input pointers */
 | |
|         pSrc1 += 2U;
 | |
|         pSrc2 -= 2U;
 | |
| 
 | |
|         /* write output */
 | |
|         *pDst1++ = (q15_t) outR;
 | |
|         *pDst1++ = (q15_t) (outI >> 16);
 | |
| 
 | |
|         /* update coefficient pointer */
 | |
|         pCoefB = pCoefB + (2U * modifier);
 | |
|         pCoefA = pCoefA + (2U * modifier);
 | |
| 
 | |
|         i--;
 | |
|     }
 | |
| #endif /* #if defined (ARM_MATH_DSP) */
 | |
| }
 |