122 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			122 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the License); you may
 | |
|  * not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  * www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | |
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| /* ----------------------------------------------------------------------
 | |
|  * Project:      CMSIS NN Library
 | |
|  * Title:        arm_softmax_q7.c
 | |
|  * Description:  Q7 softmax function
 | |
|  *
 | |
|  * $Date:        20. February 2018
 | |
|  * $Revision:    V.1.0.0
 | |
|  *
 | |
|  * Target Processor:  Cortex-M cores
 | |
|  *
 | |
|  * -------------------------------------------------------------------- */
 | |
| 
 | |
| #include "arm_math.h"
 | |
| #include "arm_nnfunctions.h"
 | |
| 
 | |
| /**
 | |
|  *  @ingroup groupNN
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @addtogroup Softmax
 | |
|  * @{
 | |
|  */
 | |
| 
 | |
|   /**
 | |
|    * @brief Q7 softmax function
 | |
|    * @param[in]       vec_in      pointer to input vector
 | |
|    * @param[in]       dim_vec     input vector dimention
 | |
|    * @param[out]      p_out       pointer to output vector
 | |
|    * @return none.
 | |
|    *
 | |
|    * @details
 | |
|    *
 | |
|    *  Here, instead of typical natural logarithm e based softmax, we use
 | |
|    *  2-based softmax here, i.e.,:
 | |
|    * 
 | |
|    *  y_i = 2^(x_i) / sum(2^x_j)
 | |
|    *
 | |
|    *  The relative output will be different here.
 | |
|    *  But mathematically, the gradient will be the same
 | |
|    *  with a log(2) scaling factor.
 | |
|    *
 | |
|    */
 | |
| 
 | |
| void arm_softmax_q7(const q7_t * vec_in, const uint16_t dim_vec, q7_t * p_out)
 | |
| {
 | |
|     q31_t     sum;
 | |
|     int16_t   i;
 | |
|     uint8_t   shift;
 | |
|     q15_t     base;
 | |
|     base = -257;
 | |
| 
 | |
|     /* We first search for the maximum */
 | |
|     for (i = 0; i < dim_vec; i++)
 | |
|     {
 | |
|         if (vec_in[i] > base)
 | |
|         {
 | |
|             base = vec_in[i];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* 
 | |
|      * So the base is set to max-8, meaning 
 | |
|      * that we ignore really small values. 
 | |
|      * anyway, they will be 0 after shrinking to q7_t.
 | |
|      */
 | |
|     base = base - 8;
 | |
| 
 | |
|     sum = 0;
 | |
| 
 | |
|     for (i = 0; i < dim_vec; i++)
 | |
|     {
 | |
|         if (vec_in[i] > base) 
 | |
|         {
 | |
|             shift = (uint8_t)__USAT(vec_in[i] - base, 5);
 | |
|             sum += 0x1 << shift;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* This is effectively (0x1 << 20) / sum */
 | |
|     int output_base = 0x100000 / sum;
 | |
| 
 | |
|     /* 
 | |
|      * Final confidence will be output_base >> ( 13 - (vec_in[i] - base) )
 | |
|      * so 128 (0x1<<7) -> 100% confidence when sum = 0x1 << 8, output_base = 0x1 << 12 
 | |
|      * and vec_in[i]-base = 8
 | |
|      */
 | |
|     for (i = 0; i < dim_vec; i++) 
 | |
|     {
 | |
|         if (vec_in[i] > base) 
 | |
|         {
 | |
|             /* Here minimum value of 13+base-vec_in[i] will be 5 */
 | |
|             shift = (uint8_t)__USAT(13+base-vec_in[i], 5);
 | |
|             p_out[i] = (q7_t) __SSAT((output_base >> shift), 8);
 | |
|         } else {
 | |
|             p_out[i] = 0;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @} end of Softmax group
 | |
|  */
 |