/**
  ******************************************************************************
  * @file    UART/UART_HyperTerminal_DMA/Src/main.c
  * @author  MCD Application Team
  * @brief   This sample code shows how to use UART HAL API to transmit
  *          and receive a data buffer with a communication process based on
  *          DMA transfer.
  *          The communication is done with the Hyperterminal PC application.
  ******************************************************************************
  * @attention
  *
  * 
© Copyright (c) 2016 STMicroelectronics.
  * All rights reserved.
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/** @addtogroup STM32F1xx_HAL_Examples
  * @{
  */
/** @addtogroup UART_Hyperterminal_DMA
  * @{
  */
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* UART handler declaration */
UART_HandleTypeDef UartHandle;
/* Buffer used for transmission */
uint8_t aTxBuffer[] = "\n\r ****UART-Hyperterminal communication based on DMA****\n\r Enter 10 characters using keyboard :\n\r";
/* Buffer used for reception */
uint8_t aRxBuffer[RXBUFFERSIZE];
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void Error_Handler(void);
/* Private functions ---------------------------------------------------------*/
/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /* STM32F1xx HAL library initialization:
       - Configure the Flash prefetch
       - Systick timer is configured by default as source of time base, but user 
         can eventually implement his proper time base source (a general purpose 
         timer for example or other time source), keeping in mind that Time base 
         duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and 
         handled in milliseconds basis.
       - Set NVIC Group Priority to 4
       - Low Level Initialization
     */
  HAL_Init();
  
  /* Configure the system clock to 24 MHz */
  SystemClock_Config();
  /* Configure LED3 and LED4 */
  BSP_LED_Init(LED3);
  BSP_LED_Init(LED4);
  
  /*##-1- Configure the UART peripheral ######################################*/
  /* Put the USART peripheral in the Asynchronous mode (UART Mode) */
  /* UART configured as follows:
      - Word Length = 8 Bits
      - Stop Bit    = One Stop bit
      - Parity      = ODD parity
      - BaudRate    = 9600 baud
      - Hardware flow control disabled (RTS and CTS signals) */
  UartHandle.Instance        = USARTx;
  UartHandle.Init.BaudRate   = 9600;
  UartHandle.Init.WordLength = UART_WORDLENGTH_8B;
  UartHandle.Init.StopBits   = UART_STOPBITS_1;
  UartHandle.Init.Parity     = UART_PARITY_ODD;
  UartHandle.Init.HwFlowCtl  = UART_HWCONTROL_NONE;
  UartHandle.Init.Mode       = UART_MODE_TX_RX;
  if (HAL_UART_Init(&UartHandle) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }
  /*##-2- Start the transmission process #####################################*/
  /* User start transmission data through "TxBuffer" buffer */
  if (HAL_UART_Transmit_DMA(&UartHandle, (uint8_t *)aTxBuffer, TXBUFFERSIZE) != HAL_OK)
  {
    /* Transfer error in transmission process */
    Error_Handler();
  }
  /*##-3- Put UART peripheral in reception process ###########################*/
  /* Any data received will be stored in "RxBuffer" buffer : the number max of
     data received is 10 */
  if (HAL_UART_Receive_DMA(&UartHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK)
  {
    /* Transfer error in reception process */
    Error_Handler();
  }
  /*##-4- Wait for the end of the transfer ###################################*/
  /*  Before starting a new communication transfer, you need to check the current
      state of the peripheral; if it’s busy you need to wait for the end of current
      transfer before starting a new one.
      For simplicity reasons, this example is just waiting till the end of the
      transfer, but application may perform other tasks while transfer operation
      is ongoing. */
  while (HAL_UART_GetState(&UartHandle) != HAL_UART_STATE_READY)
  {
  }
  /*##-5- Send the received Buffer ###########################################*/
  if (HAL_UART_Transmit_DMA(&UartHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK)
  {
    /* Transfer error in transmission process */
    Error_Handler();
  }
  /*##-6- Wait for the end of the transfer ###################################*/
  /*  Before starting a new communication transfer, you need to check the current
      state of the peripheral; if it’s busy you need to wait for the end of current
      transfer before starting a new one.
      For simplicity reasons, this example is just waiting till the end of the
      transfer, but application may perform other tasks while transfer operation
      is ongoing. */
  while (HAL_UART_GetState(&UartHandle) != HAL_UART_STATE_READY)
  {
  }
  /* Infinite loop */
  while (1)
  {
  }
}
/**
  * @brief  System Clock Configuration
  *         The system Clock is configured as follow : 
  *            System Clock source            = PLL (HSE)
  *            SYSCLK(Hz)                     = 24000000
  *            HCLK(Hz)                       = 24000000
  *            AHB Prescaler                  = 1
  *            APB1 Prescaler                 = 1
  *            APB2 Prescaler                 = 1
  *            HSE Frequency(Hz)              = 8000000
  *            HSE PREDIV1                    = 2
  *            PLLMUL                         = 6
  *            Flash Latency(WS)              = 0
  * @param  None
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_ClkInitTypeDef clkinitstruct = {0};
  RCC_OscInitTypeDef oscinitstruct = {0};
  
  /* Enable HSE Oscillator and activate PLL with HSE as source */
  oscinitstruct.OscillatorType  = RCC_OSCILLATORTYPE_HSE;
  oscinitstruct.HSEState        = RCC_HSE_ON;
  oscinitstruct.HSEPredivValue  = RCC_HSE_PREDIV_DIV2;
  oscinitstruct.PLL.PLLState    = RCC_PLL_ON;
  oscinitstruct.PLL.PLLSource   = RCC_PLLSOURCE_HSE;
  oscinitstruct.PLL.PLLMUL      = RCC_PLL_MUL6;
  if (HAL_RCC_OscConfig(&oscinitstruct)!= HAL_OK)
  {
    /* Initialization Error */
    while(1); 
  }
  /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 
     clocks dividers */
  clkinitstruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
  clkinitstruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  clkinitstruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  clkinitstruct.APB2CLKDivider = RCC_HCLK_DIV1;
  clkinitstruct.APB1CLKDivider = RCC_HCLK_DIV1;  
  if (HAL_RCC_ClockConfig(&clkinitstruct, FLASH_LATENCY_0)!= HAL_OK)
  {
    /* Initialization Error */
    while(1); 
  }
}
/**
  * @brief  This function is executed in case of error occurrence.
  * @param  None
  * @retval None
  */
static void Error_Handler(void)
{
  /* Toogle LED4 for error */
  while(1)
  {
    BSP_LED_Toggle(LED4);
    HAL_Delay(1000);
  }
}
/**
  * @brief  Tx Transfer completed callback
  * @param  huart: UART handle.
  * @note   This example shows a simple way to report end of DMA Tx transfer, and
  *         you can add your own implementation.
  * @retval None
  */
void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
{
  /* Toogle LED3 : Transfer in transmission process is correct */
  BSP_LED_On(LED3);
}
/**
  * @brief  Rx Transfer completed callback
  * @param  huart: UART handle
  * @note   This example shows a simple way to report end of DMA Rx transfer, and
  *         you can add your own implementation.
  * @retval None
  */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
  /* Turn LED4 on: Transfer in reception process is correct */
  BSP_LED_On(LED4);
}
/**
  * @brief  UART error callbacks
  * @param  huart: UART handle
  * @note   This example shows a simple way to report transfer error, and you can
  *         add your own implementation.
  * @retval None
  */
void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
{
  /* Turn LED4 off: Transfer error in reception/transmission process */
  BSP_LED_Off(LED4);
}
#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* Infinite loop */
  while (1)
  {
  }
}
#endif
/**
  * @}
  */
/**
  * @}
  */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/