/** ****************************************************************************** * @file SMARTCARD_T0/Src/main.c * @author MCD Application Team * @brief This sample code shows how to use STM32F1xx SMARTCARD HAL API to communicate * with card compatible with T0 protocol. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #if defined(HAL_UART_MODULE_ENABLED) #include #endif /* HAL_UART_MODULE_ENABLED */ /** @addtogroup STM32F1xx_HAL_Examples * @{ */ /** @addtogroup SMARTCARD_T0 * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ #if defined(HAL_UART_MODULE_ENABLED) #define UART_TIMEOUT_VALUE 1000 #endif /* HAL_UART_MODULE_ENABLED */ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Directories & Files ID */ const uint8_t MasterRoot[2] = {0x3F, 0x00}; const uint8_t GSMDir[2] = {0x7F, 0x20}; const uint8_t ICCID[2] = {0x2F, 0xE2}; const uint8_t IMSI[2] = {0x6F, 0x07}; const uint8_t CHV1[8] = {'0', '0', '0', '0', '0', '0', '0', '0'}; /* APDU Transport Structures */ SC_ADPU_Commands SC_ADPU; SC_ADPU_Response SC_Response; __IO uint32_t CardInserted = 0; uint32_t CHV1Status = 0, i = 0; __IO uint8_t ICCID_Content[10] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; __IO uint8_t IMSI_Content[9] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; #if defined(HAL_UART_MODULE_ENABLED) UART_HandleTypeDef huart; #endif /* HAL_UART_MODULE_ENABLED */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void Error_Handler(void); #if defined(HAL_UART_MODULE_ENABLED) void UART_Config(void); #ifdef __GNUC__ /* With GCC, small printf (option LD Linker->Libraries->Small printf set to 'Yes') calls __io_putchar() */ #define PUTCHAR_PROTOTYPE int __io_putchar(int ch) #else #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f) #endif /* __GNUC__ */ #endif /* HAL_UART_MODULE_ENABLED */ /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { /* STM32F103xG HAL library initialization: - Configure the Flash prefetch, instruction and Data caches - Configure the Systick to generate an interrupt each 1 msec - Set NVIC Group Priority to 4 - Global MSP (MCU Support Package) initialization */ HAL_Init(); /* Configure the system clock to 72 MHz */ SystemClock_Config(); /* Configure LED1, LED2, LED3 and LED4 */ BSP_LED_Init(LED1); BSP_LED_Init(LED2); BSP_LED_Init(LED3); BSP_LED_Init(LED4); #if defined(HAL_UART_MODULE_ENABLED) UART_Config(); #endif /* HAL_UART_MODULE_ENABLED */ SC_State SCState = SC_POWER_OFF; /* Configure Smartcard Interface GPIO pins */ SC_IOConfig(); /*-------------------------------- Idle task ---------------------------------*/ while(1) { #if defined(HAL_UART_MODULE_ENABLED) printf("-- Waiting for card insertion -- (LED1 blinking) \n\r"); #endif /* HAL_UART_MODULE_ENABLED */ /* Loop while no Smartcard is detected */ while(CardInserted == 0) { BSP_LED_Toggle(LED1); HAL_Delay(200); } BSP_LED_On(LED1); /* Start SC Demo ---------------------------------------------------------*/ #if defined(HAL_UART_MODULE_ENABLED) printf("-- Card inserted -- (All LEDs On) \n\r"); #endif /* HAL_UART_MODULE_ENABLED */ /* Wait A2R --------------------------------------------------------------*/ SCState = SC_POWER_ON; SC_ADPU.Header.CLA = 0x00; SC_ADPU.Header.INS = SC_GET_A2R; SC_ADPU.Header.P1 = 0x00; SC_ADPU.Header.P2 = 0x00; SC_ADPU.Body.LC = 0x00; while(SCState != SC_ACTIVE_ON_T0) { SC_Handler(&SCState, &SC_ADPU, &SC_Response); } #if defined(HAL_UART_MODULE_ENABLED) printf("-- Card powered ON : ATR received -- \n\r"); #endif /* HAL_UART_MODULE_ENABLED */ /* Apply the Procedure Type Selection (PTS) */ SC_PTSConfig(); #if defined(HAL_UART_MODULE_ENABLED) printf("-- PTS procedure performed -- \n\r"); #endif /* HAL_UART_MODULE_ENABLED */ /* Inserts delay(400ms) for Smartcard clock resynchronisation */ HAL_Delay(400); /* Select MF -------------------------------------------------------------*/ SC_ADPU.Header.CLA = SC_CLA_GSM11; SC_ADPU.Header.INS = SC_SELECT_FILE; SC_ADPU.Header.P1 = 0x00; SC_ADPU.Header.P2 = 0x00; SC_ADPU.Body.LC = 0x02; for(i = 0; i < SC_ADPU.Body.LC; i++) { SC_ADPU.Body.Data[i] = MasterRoot[i]; } while(i < LC_MAX) { SC_ADPU.Body.Data[i++] = 0; } SC_ADPU.Body.LE = 0; SC_Handler(&SCState, &SC_ADPU, &SC_Response); #if defined(HAL_UART_MODULE_ENABLED) printf("-- ### SELECT MF ### \n\r"); #endif /* HAL_UART_MODULE_ENABLED */ /* Get Response on MF ----------------------------------------------------*/ if(SC_Response.SW1 == SC_DF_SELECTED) { SC_ADPU.Header.CLA = SC_CLA_GSM11; SC_ADPU.Header.INS = SC_GET_RESPONCE; SC_ADPU.Header.P1 = 0x00; SC_ADPU.Header.P2 = 0x00; SC_ADPU.Body.LC = 0x00; SC_ADPU.Body.LE = SC_Response.SW2; SC_Handler(&SCState, &SC_ADPU, &SC_Response); } #if defined(HAL_UART_MODULE_ENABLED) printf("-- ### GET RESPONSE ### \n\r"); #endif /* HAL_UART_MODULE_ENABLED */ /* Select ICCID ----------------------------------------------------------*/ if(((SC_Response.SW1 << 8) | (SC_Response.SW2)) == SC_OP_TERMINATED) { /* Check if the CHV1 is enabled */ if((SC_Response.Data[13] & 0x80) == 0x00) { CHV1Status = 0x01; #if defined(HAL_UART_MODULE_ENABLED) printf("-- CHV1 is enabled -- \n\r"); #endif /* HAL_UART_MODULE_ENABLED */ } else { #if defined(HAL_UART_MODULE_ENABLED) printf("-- CHV1 is disabled -- \n\r"); #endif /* HAL_UART_MODULE_ENABLED */ } /* Send APDU Command for ICCID selection */ SC_ADPU.Header.CLA = SC_CLA_GSM11; SC_ADPU.Header.INS = SC_SELECT_FILE; SC_ADPU.Header.P1 = 0x00; SC_ADPU.Header.P2 = 0x00; SC_ADPU.Body.LC = 0x02; for(i = 0; i < SC_ADPU.Body.LC; i++) { SC_ADPU.Body.Data[i] = ICCID[i]; } while(i < LC_MAX) { SC_ADPU.Body.Data[i++] = 0; } SC_ADPU.Body.LE = 0; SC_Handler(&SCState, &SC_ADPU, &SC_Response); #if defined(HAL_UART_MODULE_ENABLED) printf("-- ### SELECT EF ICCID ### \n\r"); #endif /* HAL_UART_MODULE_ENABLED */ } /* Read Binary in ICCID --------------------------------------------------*/ if(SC_Response.SW1 == SC_EF_SELECTED) { SC_ADPU.Header.CLA = SC_CLA_GSM11; SC_ADPU.Header.INS = SC_READ_BINARY; SC_ADPU.Header.P1 = 0x00; SC_ADPU.Header.P2 = 0x00; SC_ADPU.Body.LC = 0x00; SC_ADPU.Body.LE = 10; SC_Handler(&SCState, &SC_ADPU, &SC_Response); } #if defined(HAL_UART_MODULE_ENABLED) printf("-- ### READ BINARY (ICCID) ### \n\r"); #endif /* HAL_UART_MODULE_ENABLED */ /* Select GSMDir ---------------------------------------------------------*/ if(((SC_Response.SW1 << 8) | (SC_Response.SW2)) == SC_OP_TERMINATED) { /* Copy the ICCID File content into ICCID_Content buffer */ for(i = 0; i < SC_ADPU.Body.LE; i++) { ICCID_Content[i] = SC_Response.Data[i]; } #if defined(HAL_UART_MODULE_ENABLED) printf("-- ICCID Value = "); for(i = 0; i < SC_ADPU.Body.LE; i++) { printf("%x ",ICCID_Content[i]); } printf("\n\r"); #endif /* HAL_UART_MODULE_ENABLED */ /* Send APDU Command for GSMDir selection */ SC_ADPU.Header.CLA = SC_CLA_GSM11; SC_ADPU.Header.INS = SC_SELECT_FILE; SC_ADPU.Header.P1 = 0x00; SC_ADPU.Header.P2 = 0x00; SC_ADPU.Body.LC = 0x02; for(i = 0; i < SC_ADPU.Body.LC; i++) { SC_ADPU.Body.Data[i] = GSMDir[i]; } while(i < LC_MAX) { SC_ADPU.Body.Data[i++] = 0; } SC_ADPU.Body.LE = 0; SC_Handler(&SCState, &SC_ADPU, &SC_Response); #if defined(HAL_UART_MODULE_ENABLED) printf("-- ### SELECT DF GSM ### \n\r"); #endif /* HAL_UART_MODULE_ENABLED */ } /* Select IMSI -----------------------------------------------------------*/ if(SC_Response.SW1 == SC_DF_SELECTED) { SC_ADPU.Header.CLA = SC_CLA_GSM11; SC_ADPU.Header.INS = SC_SELECT_FILE; SC_ADPU.Header.P1 = 0x00; SC_ADPU.Header.P2 = 0x00; SC_ADPU.Body.LC = 0x02; for(i = 0; i < SC_ADPU.Body.LC; i++) { SC_ADPU.Body.Data[i] = IMSI[i]; } while(i < LC_MAX) { SC_ADPU.Body.Data[i++] = 0; } SC_ADPU.Body.LE = 0; SC_Handler(&SCState, &SC_ADPU, &SC_Response); #if defined(HAL_UART_MODULE_ENABLED) printf("-- ### SELECT EF IMSI ### \n\r"); #endif /* HAL_UART_MODULE_ENABLED */ } /* Get Response on IMSI File ---------------------------------------------*/ if(SC_Response.SW1 == SC_EF_SELECTED) { SC_ADPU.Header.CLA = SC_CLA_GSM11; SC_ADPU.Header.INS = SC_GET_RESPONCE; SC_ADPU.Header.P1 = 0x00; SC_ADPU.Header.P2 = 0x00; SC_ADPU.Body.LC = 0x00; SC_ADPU.Body.LE = SC_Response.SW2; SC_Handler(&SCState, &SC_ADPU, &SC_Response); } /* Read Binary in IMSI ---------------------------------------------------*/ if(CHV1Status == 0x00) { if(((SC_Response.SW1 << 8) | (SC_Response.SW2)) == SC_OP_TERMINATED) { /* Enable CHV1 (PIN1) ------------------------------------------------*/ /* CHV1 enabling should be done using proper value of used card CHV1 */ /* Please fill corresponding value in CHV1[array] . Current value is set to "00000000". */ SC_ADPU.Header.CLA = SC_CLA_GSM11; SC_ADPU.Header.INS = SC_ENABLE; SC_ADPU.Header.P1 = 0x00; SC_ADPU.Header.P2 = 0x01; SC_ADPU.Body.LC = 0x08; for(i = 0; i < SC_ADPU.Body.LC; i++) { SC_ADPU.Body.Data[i] = CHV1[i]; } while(i < LC_MAX) { SC_ADPU.Body.Data[i++] = 0; } SC_ADPU.Body.LE = 0; SC_Handler(&SCState, &SC_ADPU, &SC_Response); #if defined(HAL_UART_MODULE_ENABLED) printf("-- ### CHV1 ENABLE ### \n\r"); #endif /* HAL_UART_MODULE_ENABLED */ } } else { if(((SC_Response.SW1 << 8) | (SC_Response.SW2)) == SC_OP_TERMINATED) { /* Verify CHV1 (PIN1) ------------------------------------------------*/ /* CHV1 enabling should be done using proper value of used card CHV1 */ /* Please fill corresponding value in CHV1[array] . Current value is set to "00000000". */ SC_ADPU.Header.CLA = SC_CLA_GSM11; SC_ADPU.Header.INS = SC_VERIFY; SC_ADPU.Header.P1 = 0x00; SC_ADPU.Header.P2 = 0x01; SC_ADPU.Body.LC = 0x08; for(i = 0; i < SC_ADPU.Body.LC; i++) { SC_ADPU.Body.Data[i] = CHV1[i]; } while(i < LC_MAX) { SC_ADPU.Body.Data[i++] = 0; } SC_ADPU.Body.LE = 0; SC_Handler(&SCState, &SC_ADPU, &SC_Response); #if defined(HAL_UART_MODULE_ENABLED) printf("-- ### CHV1 VERIFY ### \n\r"); #endif /* HAL_UART_MODULE_ENABLED */ } } /* Read Binary in IMSI ---------------------------------------------------*/ if(((SC_Response.SW1 << 8) | (SC_Response.SW2)) == SC_OP_TERMINATED) { #if defined(HAL_UART_MODULE_ENABLED) printf("-- ### CHV1 Operation successfull ### \n\r"); #endif /* HAL_UART_MODULE_ENABLED */ SC_ADPU.Header.CLA = SC_CLA_GSM11; SC_ADPU.Header.INS = SC_READ_BINARY; SC_ADPU.Header.P1 = 0x00; SC_ADPU.Header.P2 = 0x00; SC_ADPU.Body.LC = 0x00; SC_ADPU.Body.LE = 9; SC_Handler(&SCState, &SC_ADPU, &SC_Response); } else { #if defined(HAL_UART_MODULE_ENABLED) printf("-- ### CHV1 Operation unsuccessfull : SW1/SW2=0x%4x ### \n\r", ((SC_Response.SW1 << 8) | (SC_Response.SW2))); #endif /* HAL_UART_MODULE_ENABLED */ } #if defined(HAL_UART_MODULE_ENABLED) printf("-- ### READ BINARY (IMSI) ### \n\r"); #endif /* HAL_UART_MODULE_ENABLED */ if(((SC_Response.SW1 << 8) | (SC_Response.SW2)) == SC_OP_TERMINATED) { /* Copy the IMSI File content into IMSI_Content buffer */ for(i = 0; i < SC_ADPU.Body.LE; i++) { IMSI_Content[i] = SC_Response.Data[i]; } } #if defined(HAL_UART_MODULE_ENABLED) printf("-- IMSI Value = "); for(i = 0; i < SC_ADPU.Body.LE; i++) { printf("%x ",IMSI_Content[i]); } printf("\n\r"); #endif /* HAL_UART_MODULE_ENABLED */ /* Disable the Smartcard interface */ SCState = SC_POWER_OFF; SC_Handler(&SCState, &SC_ADPU, &SC_Response); #if defined(HAL_UART_MODULE_ENABLED) printf("-- Card powered OFF -- \n\r"); #endif /* HAL_UART_MODULE_ENABLED */ #if defined(HAL_UART_MODULE_ENABLED) printf("-- Waiting for card removal -- (LED1 blinking) \n\r"); #endif /* HAL_UART_MODULE_ENABLED */ /* Loop while a Smartcard is detected */ while(CardInserted == 1) { BSP_LED_Toggle(LED1); HAL_Delay(200); } BSP_LED_Off(LED1); BSP_LED_Off(LED2); BSP_LED_Off(LED3); BSP_LED_Off(LED4); } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 72000000 * HCLK(Hz) = 72000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSE Frequency(Hz) = 8000000 * HSE PREDIV1 = 1 * PLLMUL = 9 * Flash Latency(WS) = 2 * @param None * @retval None */ void SystemClock_Config(void) { RCC_ClkInitTypeDef clkinitstruct = {0}; RCC_OscInitTypeDef oscinitstruct = {0}; /* Enable HSE Oscillator and activate PLL with HSE as source */ oscinitstruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; oscinitstruct.HSEState = RCC_HSE_ON; oscinitstruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; oscinitstruct.PLL.PLLState = RCC_PLL_ON; oscinitstruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; oscinitstruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&oscinitstruct)!= HAL_OK) { /* Initialization Error */ while(1); } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ clkinitstruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); clkinitstruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; clkinitstruct.AHBCLKDivider = RCC_SYSCLK_DIV1; clkinitstruct.APB2CLKDivider = RCC_HCLK_DIV1; clkinitstruct.APB1CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&clkinitstruct, FLASH_LATENCY_2)!= HAL_OK) { /* Initialization Error */ while(1); } } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* Toggle LED3 */ while (1) { BSP_LED_Toggle(LED3); HAL_Delay(1000); } } /** * @brief EXTI line detection callbacks * @param GPIO_Pin: Specifies the pins connected EXTI line * @retval None */ void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { if(GPIO_Pin == SC_OFF_PIN) { /* Toggle LED2..4 */ BSP_LED_Toggle(LED2); BSP_LED_Toggle(LED3); BSP_LED_Toggle(LED4); if (CardInserted == 0) { /* Smartcard detected */ CardInserted = 1; /* Enable CMDVCC */ SC_PowerCmd(ENABLE); /* Reset the card */ SC_Reset(GPIO_PIN_RESET); } else { /* Smartcard removed */ CardInserted = 0; /* Enable CMDVCC */ SC_PowerCmd(DISABLE); } } else { /* Smartcard removed */ CardInserted = 0; } } /** * @brief SMARTCARD error callbacks * @param hsc: usart handle * @retval None */ void HAL_SMARTCARD_ErrorCallback(SMARTCARD_HandleTypeDef *hsc) { if(HAL_SMARTCARD_GetError(hsc) & HAL_SMARTCARD_ERROR_FE) { __HAL_SMARTCARD_FLUSH_DRREGISTER(hsc); /* Resend the byte that failed to be received (by the Smartcard) correctly */ SC_ParityErrorHandler(); } if(HAL_SMARTCARD_GetError(hsc) & HAL_SMARTCARD_ERROR_PE) { /* Enable SC_USART RXNE Interrupt (until receiving the corrupted byte) */ __HAL_SMARTCARD_ENABLE_IT(hsc, SMARTCARD_IT_RXNE); /* Flush the SC_USART DR register */ __HAL_SMARTCARD_FLUSH_DRREGISTER(hsc); } if(HAL_SMARTCARD_GetError(hsc) & HAL_SMARTCARD_ERROR_NE) { __HAL_SMARTCARD_FLUSH_DRREGISTER(hsc); } if(HAL_SMARTCARD_GetError(hsc) & HAL_SMARTCARD_ERROR_ORE) { __HAL_SMARTCARD_FLUSH_DRREGISTER(hsc); } } /** * @brief Rx Transfer completed callbacks * @param hsc: usart handle * @retval None */ void HAL_SMARTCARD_RxCpltCallback(SMARTCARD_HandleTypeDef *hsc) { /* Disable SC_USART RXNE Interrupt */ __HAL_SMARTCARD_DISABLE_IT(hsc, SMARTCARD_IT_RXNE); hsc->Instance->DR; } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif #if defined(HAL_UART_MODULE_ENABLED) /** * @brief Configures the USARTx and associated pins. * @param None * @retval None */ void UART_Config(void) { /* UARTx configured as follow: - BaudRate = 115200 baud - Word Length = 8 Bits - One Stop Bit - No parity - Hardware flow control disabled (RTS and CTS signals) - Receive and transmit enabled */ huart.Init.BaudRate = 115200; huart.Init.Mode = UART_MODE_TX_RX; huart.Init.Parity = UART_PARITY_NONE; huart.Init.StopBits = UART_STOPBITS_1; huart.Init.WordLength = UART_WORDLENGTH_8B; huart.Init.HwFlowCtl = UART_HWCONTROL_NONE; BSP_COM_Init(COM1, &huart); } /** * @brief Retargets the C library printf function to the USART1. * @param ch: character to send * @param f: pointer to file (not used) * @retval The character transmitted */ PUTCHAR_PROTOTYPE { /* Place your implementation of fputc here */ /* e.g. write a character to the EVAL_COM1 and Loop until the end of transmission */ HAL_UART_Transmit(&huart, (uint8_t *)&ch, 1, UART_TIMEOUT_VALUE); return ch; } /** * @brief Retargets the C library scanf function to the USART1. * @param f: pointer to file (not used) * @retval The character received */ int fgetc(FILE * f) { uint8_t ch = 0; /* We received the charracter on the handler of the USART1 */ /* The handler must be initialise before */ HAL_UART_Receive(&huart, (uint8_t *)&ch, 1, UART_TIMEOUT_VALUE); return ch; } #endif /* HAL_UART_MODULE_ENABLED */ /** * @} */ /** * @} */